Welcome Guest! please  Login

ISSN 2457-9459 (Online)
ISSN-L 0576-9787 (Print)


2023

Journal Citation Reports
Impact factor 2023: 1.3
5-Year Impact Factor: 1.2
Article Influence® Score: 0.140
Ranked 9 out of 23
MATERIALS SCIENCE, PAPER & WOOD (Q2)

Scopus
CiteScore 2023: 2.3
SNIP: 0.405

SCImago
SJR: 0.264
H-Index: 42
Ranked Q3

 

Title
Cellulose/graphene nanoplatelets cryogel for adsorption of dyes in an aqueous medium
Authors
LÍDIA K. LAZZARI, ADEMIR J. ZATTERA and RUTH M. C. SANTANA

Received December 14, 2023
Published Volume 58 Issue 3-4 March-April
Keywords cryogel, cellulose, graphene nanoplatelets, adsorption, dyes

Abstract
Contamination of water resources by industrial dyes has caused environmental, economic and human health hazards. There is a great need to find effective technologies to remove pollutants in a safe and accessible way. An enticing option involves employing cellulose cryogels as adsorbents to extract dyes from water. This research delves into the production intricacies of cellulose/graphene cryogels and meticulously explores their physical and chemical properties. Dye adsorption tests were conducted to evaluate the efficiency of the prepared cryogels in removing organic dyes from water. The results show that cryogels have high dye adsorption capacity, especially when combined with graphene nanoplatelets. Kinetic and isothermal models reveal that the adsorption process follows pseudo-second-order kinetics and is described by the Langmuir isotherm, suggesting a single-layer adsorption mechanism and a strong interaction between the dyes and the cryogels. In summary, the study demonstrates that the cellulose/graphene nanoplatelets cryogels are effective in removing organic dyes from water, offering a sustainable and economically viable solution to the problem of industrial dye pollution.


Link https://doi.org/10.35812/CelluloseChemTechnol.2024.58.39

- Full text available Download



Reviewer Information

Editor Information