Welcome Guest! please  Login

ISSN 2457-9459 (Online)
ISSN-L 0576-9787 (Print)


2023

Journal Citation Reports
Impact factor 2023: 1.3
5-Year Impact Factor: 1.2
Article Influence® Score: 0.140
Ranked 9 out of 23
MATERIALS SCIENCE, PAPER & WOOD (Q2)

Scopus
CiteScore 2023: 2.3
SNIP: 0.405

SCImago
SJR: 0.264
H-Index: 42
Ranked Q3

 

Title
Electrospinning of antibacterial cellulose acetate nanofibers
Authors
REM YAGMUR MOL, FUNDA CENGIZ ÇALLIOGLU, HÜLYA KESICI GÜLER, EMEL SESLI ÇETIN and GÖKSEL BILIR

Received August 7, 2022
Published Volume 57 Issue 1-2 January-February
Keywords cellulose acetate, zinc oxide, electrospinning, antibacterial nanofibers

Abstract
Herein, it was aimed to achieve antibacterial cellulose acetate (CA) nanofiber production and characterization. Firstly, solution properties, such as viscosity, conductivity and surface tension, were determined. Secondly, CA/zinc oxide (ZnO) composite nanofibers were produced with optimum process parameters via the electrospinning method. Then, the electrospun nanofibers were characterized by SEM, EDX, DSC, TGA, XRD, air permeability and water vapor permeability testing. Lastly, antibacterial activity tests were carried out in accordance with the AATCC100 method, against Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922). According to the results, solution conductivity decreased and surface tension did not change with ZnO concentration. On the other hand, viscosity decreased significantly with the first addition of ZnO and then increased slightly with increasing ZnO concentration. Generally, fine (354–464 nm), uniform and beadless nanofibers were obtained. Average fiber diameter, air permeability and water vapor permeability increased with ZnO concentration. EDX analysis results verified the existence of ZnO in the structure of CA nanofibers. As a result of antibacterial studies, it was determined that the CA/zinc oxide (ZnO) composite nanofibers with the highest concentration of ZnO showed very good antibacterial activity against both S. aureus and E. coli bacterial strains.


Link https://doi.org/10.35812/CelluloseChemTechnol.2023.57.08

- Full text available Download



Reviewer Information

Editor Information