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A mathematical model assuming an axial dispersion mechanism, based on two dimensionless criteria, 
namely the Peclet number and the Biot number, was proposed for the displacement washing of a packed bed 
of porous, compressible and cylindrical particles. Bulk fluid concentration, intrapore solute concentration 
and concentration of the solute adsorbed onto the fiber surface were considered as a function of both 
washing time and position in the bed. Displacement washing experiments performed on pulp beds formed of 
unbeaten, unbleached kraft fibers were simulated with a laboratory washing cell. The model predicted values 
of the breakthrough curves, and the average alkali lignin concentration in the bed and displacement ratio 
were compared with those obtained experimentally. A close agreement was found between the experimental 
data and the ones calculated from model equations. 
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INTRODUCTION 

If the solid particles, such as pulp fibers, 
are porous, the washing process may be 
considered as including two operations – 
displacement and leaching – occurring 
simultaneously. The solute to be removed is 
contained in the liquor, in the interparticle 
voids and within fibers. An unpredictable 
labyrinth of pores of various tortuosity 
degrees forms a complex network of voids in 
the pulp bed. The solute present in the 
interconnected pores can be removed by a 
simple displacement by the washing liquid. 
The transport of the solute from within the 
fibers to the bulk liquid involves several 
steps. The solute must diffuse out of the 
internal structure of the fiber to the external 
surface of the liquid film immobilized on the 
external surface of the fiber, prior to its 
becoming available for displacement. 

To predict the behavior of miscible fluid 
displacement in the packed beds, several 
mathematical models have been proposed. 
Assuming  that  longitudinal mixing between  

 

 
 

the displacing and the displaced fluids is 
described by an equation including the 
dimensionless Peclet number, derived on the 
basis of the material balance in unsteady 
state, Brenner1 calculated the time 
dependencies of the concentration of a solute 
leaving the bed and of the average solute 
concentration in the bed of finite length. For 
an unmovable bed of randomly oriented 
porous particles, Sherman2 and Pellet3 
modified the usual one-dimensional 
differential equation for longitudinal 
dispersion by taking into account the 
sorption phenomenon, i.e. the accumulation 
of the solute sorbed by the fiber walls and/or 
the depletion of the solute, in opposite 
directions, from the fiber walls into the 
washing liquid flowing through intrapore 
voids. The absorption equilibrium 
relationship, expressing the intraparticle 
solute concentration as a function of the 
external solution concentration, was assumed 
to be linear.  
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Grähs4 has divided the packed bed of fibers 
into three different zones, namely, the zone 
of flowing liquid, the zone of stagnant liquid 
and the fiber material. Mass transfer was 
thought to occur between the flowing and the 
stagnant liquid, and between the stagnant 
liquid and fibers. However, the solution was 
restricted only to axial dispersion. Moreover, 
some physical features of the fibers, such as 
fiber porosity and fiber radius, were ignored. 
An extended mathematical model for the 
displacement washing of a packed bed of 
porous, compressible and cylindrical 
particles, proposed by Arora et al.,5 is related 
to diffusion-dispersion and adsorption-
desorption phenomena, including, besides 
axial dispersion, pore diffusion in porous 
fibers. The sorption relationship is 
considered to be non-linear. 

In this paper, the results attained from a 
mathematical model5 were applied for the 
displacement washing of a packed bed of 
kraft pulp fibers and compared with those 
obtained experimentally in a laboratory 
washing cell. 

 
Model formulation  

A complete mathematical description of 
the displacement washing of pulp fibers (Fig. 
1) ought to include three basic equations, 
namely an equation, along with the boundary 
and initial conditions, describing the overall 
movement of a solute in the bulk liquid, an 
equation expressing mass transfer in pulp 
fibers and another equation embracing 
sorption phenomena. As displacement 
washing is an unsteady process, a set of 
partial differential equations should be 
derived.

 
 

 
Figure 1: Simplified model of displacement washing of a packed bed of porous particles 

 
Model equation for the bulk liquid phase 

For a bed of non-porous granular 
particles, the basic material balance 
involving both convective and diffusive 
transport in an elementary bed volume may 
be written as: 
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In the equation above, the longitudinal 
dispersion coefficient DL, which has the 
same dimension and is analogous to the 
molecular diffusion coefficient, is a function 
of the flow pattern within the bed. If the solid 
particles are porous, then an additional term 
should be added to equation (1), to account 
for the mass transfer through the liquid layer 
immobilized on the particle surface, as long 
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as a driving force exists. With this 
assumption, equation (1) becomes:  
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If the concentration of the solute to be 
balanced in the washing liquid entering the 
pulp bed is zero, the boundary condition at 
the inlet to the bed may be written as 
follows: 

0=
∂
∂

−
z
cDuc L  at z = 0 for all t > 0      (3) 

This condition is imposed by the 
requirement of no solute loss from the bed 
through the plane at which the displacing 
liquid is introduced. 

For bed exit, the second boundary 
condition may be expressed as: 

0=
∂
∂

z
c  at z = L for all t > 0            (4) 

The initial condition is: 

0cqc ==  and 0nn = at t = 0 for all z    (5) 
 
Model for mass transfer in porous particles 

Assuming an average fiber porosity β and 
a liquid side mass transfer coefficient kf, 
which is reciprocal to the mass transfer 
resistance, when a solute is transported from 
the fiber surface to the bulk flow through the 
liquid layer immobilized on the fiber surface, 
the mass transfer from inside the fibers to the 
bulk liquid may be presented as: 

)(1 qc
RK

k
t
n

t
q f −=

∂
∂−

+
∂
∂

β
β        (6) 

 
Adsorption isotherm 

The sorption phenomena affecting the 
mass transfer in the system studied have been 
expressed by the following equation: 
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where, at a given initial solute concentration 
c0, the solute concentration inside the fibers q 
and the solute concentration on the fiber 
surface n depend on two volumetric mass 
transfer coefficients k1 and k2, assumed to be 
of the second order, for adsorption, and of 
the first order, for desorption. At equilibrium, 
equation (7) is reduced to the Langmuir 
adsorption isotherm: 
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Basic dimensionless equations 

Using the dimensionless variables given 
in Symbols, equations (2)-(7) have been 
converted into the following dimensionless 
form: 
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initial condition: 
1=== NQC  at τ  = 0    (12) 

for mass transfer in the bulk liquid:  
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for mass transfer in the porous fibers, and: 
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for sorption. 
Dimensionless equations (9), (10) and 

(13) include two dimensionless numbers, the 
Peclet number Pe and the Biot number Bi. 
The Peclet number, depending mainly on the 
flow pattern within the packed bed, 
characterizes the ratio of the convective to 
dispersion transport mechanisms. Its value 
lies within the limits of infinity to zero for 
plug flow and perfect mixing chamber, 
respectively. In contrast to the Peclet 
number, which can be also interpreted as a 
hydrodynamic parameter of bulk flow, the 
Biot number expresses the ratio of mass 
transfer intensity from the fiber surface to the 
bulk liquid to the mass transfer intensity 
inside the fibers. When the Biot number is 
low, most of its resistance is external to the 
porous particle and the rate of the mass 
transfer can be approximated by an overall 
mass transfer coefficient, quite equal to the 
liquid film mass transfer coefficient. 
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To solve the system of partial differential 
equations in dimensionless form (9)-(14), the 
method of orthogonal collocation on finite 
elements was selected. This method was first 
proposed by Carey and Finlayson6 to solve 
the stiff system of ordinary differential 
equations. According to this method, the 
axial domain is divided into small elements 
and then orthogonal collocation is applied 
within each element. The convergence of 
numerical solutions does not depend on the 
number of collocation points, but rather on 
the number of elements to be taken in the 
domain of interest. Details on the method of 
orthogonal collocation on finite elements, on 
the selection of the collocation points and 
convergence criterion are given in earlier 
studies.5,7 
 
EXPERIMENTAL 

Stimulus-response experiments, using a step 
input, have been carried out in the displacement 
washing cell consisting of a vertical glass 
cylinder (110 mm high, 36.4 mm inner diameter) 
closed at the lower end by a permeable septum. 
The experimental apparatus is described in detail 
elsewhere.8,9 

Unmovable beds of about 4 g of pulp made 
from a blend of spruce and pine wood were 
formed by filtration of a dilute suspension of 
unbeaten, unbleached kraft pulp in the black 
liquor. In all runs, the beds were compressed to a 
final desired thickness of 30 mm. To characterize 
the pulp fibers used in the experiments, the 
physical properties of kraft pulp were also 
determined. The Schopper–Riegler freeness had a 
value of 13 SR. The degree of pulp 
delignification was expressed in terms of a kappa 
number equal to 17, while fiber length was 
determined from measurements in wet state, on a 
Kajaani FS-100 instrument. The weighed average 
length was of 2.45 mm, while the arithmetic 

average length was of only 1.42 mm. The 
coarseness of the pulp fibers had a value of 0.217 
mg/m. The effective specific volume of the fibers 
had a value of 2.55 cm3/g and the specific fiber 
surface was of 1.06×104 cm2/g. Special mention 
should be made of the fact that the specific 
volume, as well as the specific surface, were 
determined for pulp fibers in wet state, when the 
layer of water immobilized on the surface of the 
fiber walls should be taken into account.10 The 
measurements of the physical properties are 
described in detail.8,9 

To start the washing experiment, distilled 
water maintained at a temperature of about 20 °C 
was distributed uniformly via the piston to the top 
of the bed, on approximating a step change in 
concentration. Depending on the permeability of 
the pulp bed formed in the washing cell, the wash 
liquid was forced through the pulp bed, under a 
pressure drop to 7 kPa. The samples of the 
washing effluent, taken at different timed 
intervals, until the effluent was colourless, were 
analyzed for alkali lignin on an ultraviolet 
spectrophotometer operating at a wavelength of 
295 nm. The initial bed liquor concentration was 
of 50 g of alkali lignin per litre. 
 
RESULTS AND DISCUSSION 

To compare time dependencies of the 
dimensionless exit solute concentration, the 
average solute concentration in the bed and 
the displacement ratio, obtained 
experimentally, with those calculated 
according to the proposed mathematical 
model, four displacement washing runs were 
performed, i.e. runs 1 and 2, differing 
particularly by their Peclet number, and runs 
3 and 4, differing particularly in the pulp 
consistency of the bed. Some measured and 
calculated characteristics utilized to 
determine the breakthrough curves are listed 
in Table 1. 

 
 

Table 1 
Measured and calculated characteristics for displacement washing runs 

 
Runs Consistency, 

% 
Peclet number 

Pe 
Biot number 

Bi 
Mass transfer 

coefficient 
kf ×107, m s-1 

Volume 
equilibrium 
constant K 

1 
2 
3 
4 

12.09 
13.14 
7.96 

16.60 

12.3 
20.8 
13.0 
16.9 

7.4 
10 
6.3 
7.5 

8.216 
7.487 
7.859 
8.344 

0.6042 
1.1884 
0.9504 
0.6313 
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Breakthrough curves 
A response to the step change in 

concentration provided time dependencies, 
known as washing or breakthrough curves. 
To normalize the breakthrough curve 
ordinate, each concentration of alkali lignin 
in the outlet stream ce was divided by the 
initial solute concentration in the bed c0 to 
give a dimensionless exit concentration Ce. 
The abscissa was normalized in terms of the 
dimensionless time τ, defined in Symbols. 
For a better optical comparison of the 
breakthrough curves and of the further time 
dependencies in the following figures, the 
range of the time axis is limited to τ = 4, 
although the washing runs were finished at a 
dimensionless time of 9 to 10, when the 
alkali lignin concentration in the output 
stream was less than one thousandth of the 
initial lignin concentration in the pulp bed. 

The typical breakthrough curves 
measured for the first two runs, characterized 
by Peclet numbers of 12.3 and 20.8, 
respectively, are shown in Figure 2. The 
displacement washing of softwood pulp 
fibers was non-ideal, lying between the ideal 
limits of the plug flow, when the Peclet 
number approaches infinity, and of perfect 
mixing, when the Peclet number is equal to 
zero. According to Figure 2, the 
concentration profile for a higher Peclet 
number appears as a steeper drop in the 
second washing period, in which the washing 
water penetrates through the pulp bed to the 
exit stream. The calculated data, in close 
agreement with those obtained 
experimentally, confirm that, in accordance 
with a previous paper of ours,7 the higher the 
Peclet or Biot number, the steeper the drop in 
the exit solute concentration. It should be 

noted that both the Peclet and the Biot 
number are higher for run 2, compared to run 
1. 

Figure 3 plots the dimensionless exit 
solute concentration as a function of the 
dimensionless time, at two values of bed 
consistency: 7.96 and 16.60%. Both 
breakthrough curves have a similar profile, 
although the first segment of the 
breakthrough curve for the dimensionless 
exit solute concentration equal to unity is 
longer at a higher consistency. Displacement 
washing of pulp fibers is a combination of 
two mechanisms: displacement and leaching. 
At a low consistency, the bed has a large 
effective flow porosity, defined as the ratio 
of volume available for flow to the total 
volume of the bed.10 Thus, larger amounts of 
liquor can be displaced by the washing 
water, while a relatively low amount of 
liquor is removed by leaching, based on the 
diffusive mechanism developed relatively 
slowly, as depending on the driving force. 
Therefore, at high bed porosity, the 
breakthrough curve falls rapidly and passes 
to the third segment, in which the leaching 
operation prevails. Pulp bed porosity is an 
important factor as the hydrodynamics of the 
filtrate is highly influenced by the porous 
path through which the fluid is shifted. 

It is worth mentioning that the data 
obtained experimentally for softwood pulp 
were satisfactorily fitted by the proposed 
mathematical model, while the relative error 
did not exceed 1.3%. The relative errors, 
along with the mean relative quadratic errors 
δ, (defined in Symbols) for all washing runs 
here discussed are summarized in Table 2.

 
Table 2 

Relative errors and mean relative quadratic errors 
 

Runs Interval of relative error, % Mean relative quadratic error, δ, % 
1 
2 
3 
4 

(-0.86; 0.85) 
(-0.99; 0.79) 
(-1.27; 1.14) 
(-0.80; 0.51) 

0.45 
0.51 
0.59 
0.31 
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Figure 2: Time dependencies of the dimensionless 
exit solute concentration calculated for the 
variables given in Table 1. Experimental data:  
Pe = 12.3 (run 1),  Pe = 20.8 (run 2). 

Figure 3: Time dependencies of the 
dimensionless exit solute concentration 
calculated for the variables given in Table 1. 
Experimental data:  C = 7.97% (run 3),  C = 
16.60% (run 4)  

 
Average concentration in the bed 

Even if the experimental conditions were 
strictly identical, the fiber bed was always 
different, owing to the natural source of the 
material used for bed forming. The pulp fiber 
bed may be characterized as an unmovable 
bed containing compressible porous particles 
of different sizes. Deviations from the plug 
flow, known as channeling or fingering, due 
to local inhomogeneities with different 
porosity, can be assumed during 
displacement washing. Therefore, the solute 
concentration in the pulp bed should be 
expressed as average concentration, in our 
case calculated from the following 
relationship: 
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Figures 4 and 5 show the effect of the 
Peclet number and of bed consistency on the 
average solute concentration in the bed. As 
expected, at first, average concentration 
exhibits almost linear characteristics with the 
decreasing trend, after which a non-linear 

decrease in concentration, approaching zero 
with increasing time, becomes evident. As 
follows from Figure 4, the higher the Peclet 
number, the lower the solute concentration in 
the bed at a given dimensionless time. 
Higher Peclet numbers, when the exit solute 
concentration profile approaches the plug 
flow, increase the amount of solute removed 
from the pulp bed. 

According to Figure 5, the dimensionless 
solute concentration decreases as the 
dimensionless time increases for both 
consistencies, although a 16.60% consistency 
gives higher values than a consistency of 
7.97%, which is possibly related to the 
amount of liquor present in the interparticle 
voids and available for displacement, on the 
one hand, and to the amount of liquor 
adsorbed and/or absorbed in the fibers from 
which a solute should diffuse out to the wash 
liquid surrounding the fiber surface, on the 
other. Since the amount of liquor 
accumulated by the fiber increases with 
increasing consistency, the average 
concentration in the bed drops more slowly 
than in the pulp bed with a 7.97% 
consistency. 
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Figure 4: Time dependencies of the average solute 
concentration in the bed calculated for the variables 
given in Table 1. Experimental data:  Pe = 12.3 
(run 1),  Pe = 20.8 (run 2) 

Figure 5: Time dependencies of the average 
solute concentration in the bed calculated for 
the variables given in Table 1. Experimental 
data:  C = 7.97% (run 3),  C = 16.60% 
(run 4) 

 
Displacement ratio 

One of the commonly used performance 
parameters describing the amount of a solute 
removed from the pulp during washing is the 
displacement ratio. For counter-current 
washing, the displacement ratio is defined as 
the reduction in the concentration of 
dissolved solids from the pulp stream, 
divided by the maximum reduction in the 
concentration of the dissolved solids, when 
the liquor in the pulp stream leaving the 
washing stage and the wash water stream 
entering this washing stage are in 
equilibrium.11 This parameter is not suitable 
for comparing the washing systems operating 
at different inlet and discharge consistencies. 
However, if the inlet and discharge 
consistencies are identical, the displacement 
ratio is directly proportional to the quantity 
of dissolved solids to be removed. In our 
case, when pulp bed consistency remains 
unchanged and no solute is dissolved in the 
washing water entering the pulp bed, the 

displacement ratio may be calculated from 
the following relationship: 

)0(
)()0(

=

=−=
=

τ
τττ

avg

avgavg

C
CC

DR   (16) 

The effect of the Peclet number on the 
time dependence of the displacement ratio is 
shown in Figure 6. At first, the displacement 
ratio increases almost linearly with 
increasing time, and then asymptotically 
approaches unity. As expected, the 
displacement ratio data for a higher Peclet 
number are slightly higher than those for a 
lower Peclet number. 

Figure 7 shows that the displacement ratio 
curves are distinctly different for various 
consistencies. Similarly with the time 
dependencies of the average solute 
concentration in the bed, it is evident that a 
more efficient displacement of a solute is 
achieved when a large amount of liquor is 
present in the bed pores, at low pulp 
consistency.
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Figure 6: Time dependencies of the displacement 
ratio calculated for the variables given in Table 1. 
Experimental data:  Pe = 12.3 (run 1),  Pe = 
20.8 (run 2) 

Figure 7: Time dependencies of the displacement 
ratio calculated for the variables given in Table 1. 
Experimental data:  C = 7.97% (run 3),  C = 
16.60% (run 4) 

 
In conclusion, all the above experimental 

and theoretical findings suggest that the 
present mathematical model agrees quite 
well with the experimental data, considering 
many of the important aspects of diffusion, 
dispersion, adsorption-desorption and 
different porosity values in the system here 
studied. The time dependencies of the exit 
solute concentration, the average 
concentration in the bed and the 
displacement ratio reveal a satisfactory fit 
between the experimentally obtained and the 
calculated data, according to the proposed 
mathematical model. 
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SYMBOLS 
Bi  (= kf L β/(K R u)) Biot number  
c  solute concentration in the liquor, 
kg/m3 

ce  exit solute concentration, kg/m3  
c0  initial solute concentration, kg/m3 
C  (= c/c0) dimensionless solute 
concentration 
Cavg  average solute concentration in the 
bed (dimensionless) 
Ce  (= ce/c0) dimensionless exit solute 
concentration 
DL  axial dispersion coefficient, m2/s 
DR  displacement ratio  

kf  liquid film resistance mass transfer 
coefficient, m/s 
k1  volumetric mass transfer coefficient 
for solute adsorption, 1/s 
k2  volumetric mass transfer coefficient 
for solute desorption, 1/s 
K  volume equilibrium constant 
(dimensionless) 
L  bed thickness, m 
n  concentration of solute adsorbed on 
fibers, kg/m3 
n0  initial concentration of solute 
adsorbed on fibers, kg/m3 
N  (= n/n0) dimensionless 
concentration of solute adsorbed on fibers 
Pe  (= u L/DL) Peclet number  
q  intrapore solute concentration, 
kg/m3 
Q  (= q/c0) dimensionless intrapore 
solute concentration  
R  fiber pore radius, m 
t  time, s  
u  interstitial washing liquid velocity 
through the bed, m/s 
z  distance from the point of solvent 
introduction, m 
 
Greek letters 
β  fiber porosity, dimensionless 

δ  ( 1001
1

2

×








 −
= ∑

=

=

ni

i

C
n

iexp

calc

C
Cexp , 

where n is the number of 
measurements) mean relative 
quadratic error, % 

ε  bed porosity (dimensionless) 
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θ  (= 2 (1 – ε)/ε) dimensionless 
parameter 
κ  (= k1/k2) dimensionless parameter 
ν  (= n0/c0) dimensionless parameter  
ξ  (= z/L) dimensionless axial distance 
π  (= k1 L/u) dimensionless parameter  
τ  (= t u/L) dimensionless time 
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