ENCAPSULATION OF EXTRACTS FROM MIDDLE EAST MEDICINAL PLANTS AND ITS ADVANTAGES – A REVIEW ARTICLE

FAEZEH FATHI,^{*} SAMAD N. EBRAHIMI,^{*} FERNANDO ROCHA^{**} and BERTA N. ESTEVINHO^{**}

*Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Iran **LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Dr. Roberto Frias Str., 4200-465 Porto, Portugal © Corresponding author: B. N. Estevinho, berta@fe.up.pt

Received January 22, 2021

Medicinal plants have played an important role in the development of human health care and culture, serving as both medicine and food. Herbal drugs have been used for centuries for the treatment of several diseases and many of the new medicines are produced based on recent research on their traditional uses. Medicinal plants of the Middle East are regarded as a rich resource of different valuable bioactive compounds. Such compounds extracted from natural resources maintain many potential health benefits. The application of bioactive compounds is, however, rather limited in food and drug formulations because of their poor bioavailability, fast release and low solubility. Thus, encapsulation can protect the bioactive compounds from environmental stress, improve their physicochemical functionalities, reduce the potent toxicity of drugs, modify the release of encapsulated active materials, reduce dosage, enhance their health-promoting and anti-disease activities.

This review discusses the importance of the pharmaceutical properties of thirty-two species of relevant medicinal plants native to the Middle East and their uses in various industrial applications.

Keywords: bioactive compounds, encapsulation, encapsulating agent, herbal drugs, medicinal plant, natural product

INTRODUCTION

The World Health Organization (WHO) indicates that there are 20,000 different medicinal plants reported in more than 91 different countries that have adequate weather conditions for plant growth.¹ Determining the plants that can be candidates for pharmaceutical research, including their compounds of interest, among a large number of potentially valuable natural bioactive compounds, is a particularly challenging process. require important skills It would and consideration of different market-related aspects, including the comprehensive procedures for extraction and product elucidation and characterization.^{2,3}

Secondary plant metabolites are bioactive natural products that can have important benefits for human health. Data on plant extracts, summarized after an overview of numerous studies published in the last two decades, revealed

the potent properties of natural products, highlighting the importance of several classes of monoterpenes,4,5 compounds, such as monoterpene hydroperoxides, bicyclic monoterpenes, diterpens, tetranortriterpenoids,⁶ sesquiterpene,^{4,5} sesquiterpene coumarins,⁷ polysaccharides,9 triterpenoids.8 phenolic compounds,^{10–12} acids, 12,13 phenolic anthocyanins,¹⁴⁻¹⁷ flavonoids,^{14,15} flavonoid coumarins,^{15,17,19} carotenoids,^{5,16,18} tannins,^{13,15} steroids,^{13,15,17} saponins,^{13,15,17} ocopherols,¹² steroids,^{13,15,17} saponins,^{13,15,17} alkylamides,²⁰ alkaloids,^{15,17} tropane alkaloids,²¹ alkaloids, pyrazole alkaloids,²² isoquinoline acridone alkaloids.6 pyrrolizidine alkaloids, anthraquinone, naphthoquinones, xanthones.²³ glucopyranoside, naphthalene, proteins, resins, fiber, ash,⁹ amino acids,²⁴ Na, Mg, Ca, K, P, Mn,⁹ vitamins,²⁴ and a wide range of phenolic acids, for instance, rosmarinic acid,

ellagic acid, palmitoleic acids, linoleic acid, chlorogenic acid, caffeic acid, ferulic acid, phydroxybenzoic acid, gallic acid, vanillic acid, syringic, p-coumarin acid, caffeic acid,²⁵ among others. Numerous available plant species have a potential application in the food and pharmaceutical industries for the production of generally used pharmaceutical drugs and foods for human consumption, including capsules, health supplements, energy drinks, energy boosters, food products, nutraceuticals *etc*.

This work reviews some of the most important medicinal plants used in the Middle East that have shown clinical efficiency in the treatment of different kinds of diseases, and discusses possible uses of these plants in the pharmaceutical, food and cosmetic industries. Moreover, the advantages of encapsulating various plant extract bioactive compounds, by different techniques, for controlled release or drug delivery applications, which would affect the performance of the final product and its efficiency, are discussed.

RELEVANT MEDICINAL PLANTS IN THE MIDDLE EAST

In this section, the main relevant medicinal plants grown and used in the Middle East, namely in the region of Iran, will be presented. These medicinal plants have had several applications during centuries in the human diet, some for food or medicine, and others as spices, to preserve food products, fruits, *etc.* Their composition, biological activities, traditional uses, some of their health benefits and risks will be discussed. Some of these plants can be medicine or poison, depending on the amount of plant ingested. Their application as nutraceuticals and as bioactive food products is a challenge.

Satureja khuzistanica is an endemic aromatic medicinal herb of the Lamiaceae family that grows in Iran. The local people believe that it reduces cholesterol, controls the heart rate, blood pressure and rheumatic pain, and helps in losing weight. The essential oil of S. khuzistanica contains carvacrol, thymol, and a number of other phenolic compounds, as well as vitamins B, C, A and niacin. There are several reports on the antimicrobial and antioxidant properties of its essential oil, which are due to the presence of carvacrol. Carvacrol is a famous compound for many diverse biological activities, including antimicrobial, antitumor, analgesic, antiinflammatory, antiparasitic, antihepatotoxic and activities.²⁶ hepatoprotective Further, S.

khuzistanica has antifungal,^{26,27} antidiabetic, hypoglycemic, antihyperlipidemic, anticholeretic, scolicidal, lysozyme activities and hematological factors.^{28–30} On the other hand, traditional medicine says it may affect the lungs if overused.^{26,28,29}

Crocus sativus L. belongs to the Iridaceae family and is widely cultivated in Iran. Actually, Iran is the world's leading producer of saffron. It contains quercetin, galangin, kaempferol, chrysin, rosmarnic acid, naringenin, pinocembrin, myricetin.³¹ The chemical compounds found in saffron, such as crocin, crocetin (carotenoid), safranal,^{18,19,32} and its phenolic compounds^{10,11} have several significant properties described in traditional medicine, being used for alleviating sunburns, improving sexual function, reducing menstrual pain, and considered beneficial for the health of liver and kidney. Many scientists reveal that C. sativus has antioxidant, antimicrobial,^{10,31} anticancer, antigenotoxic, anti-apoptotic, angiogenesis, anti-Alzheimer, anti-Parkinson, anti-depressant, anti-convulsant, antiinflammatory, and anti-diabetic activities. It also has positive effects in the case of myocardial infarction, the nephritic syndrome. lipid peroxidation, thrombosis, respiratory disorder, insulin resistance, ischemia and anxiolytic visual impairment.^{11,33} C. sativus extract has been investigated for the treatment of colorectal cancer. 18,19,34 The most important constituent of C. sativus is saffron, and most of the medicinal uses of this species are due to it. The production of 1 kg of saffron uses almost 150.000 flowers. So, contemplating the number of flowers used to obtain the desired amount of saffron, the amount of petal waste, which are considered a by-product, can be deduced.35

Zataria multiflora Boiss. belongs to the Lamiaceae family and mainly grows in Iran, Pakistan and Afghanistan.³⁶ It is used traditionally for medicinal purposes due to its antiseptic, analgesic, carminative and intestine-soothing activities.³⁷ It is used in folk medicine to treat various ailments, such as cramps, muscle pain, nausea, indigestion, diarrhea, and cough.³⁸ Z. *multiflora* is a good source of rosmarnic acid and has p-cymene, carvacrol, thymol, and methyl-5-(1-methylethyl)-phenol. Different pharmacological aspects have been described for this plant, including its antioxidant,^{39,40} antimicrobial,^{37,40,41} cytotoxic, anti-inflammatory, anti-cancer,⁴² anti-ulcer,⁴³ and COPD activities.^{36,44,45} It is also recommended for the treatment of fatty liver disease⁴⁶ and hydatid disease,^{47,48} being also recognized for its wound healing, spasmolytic, antifungal,⁴⁹ anti-nociceptive,⁵⁰ and expectorant activities.⁵¹ Z. *multiflora* does not have any significant toxicity and has wide application in the herbal pharmaceutical industry.³⁷

Froriepia subpinnata Baill. is a medicinal herb and endemic vegetable, which grows naturally in the north of Iran. *F. subpinnata* has 150 species native to Eurasia and Africa, and more than 16 species to Europe. *F. subpinnata* grows in Central, West, and North of Iran and especially at high altitudes with a cold climate.⁵² In folk medicine, it has been used as carminative, appetizer, antiseptic, antispasmodic, anti-diuretic, sedative, and galatogogue agent.^{52,53} Some pharmacological research on *F. subpinnata* has been reported, revealing that its essential oil has anti-cancer activity,^{52,54} as well as antioxidant,⁵³ and antibacterial activities.^{52,54}

Hyssopus officinalis L. is one of the most important plants from the Lamiaceae family, being considered a medicinal plant and cultivated in regions of Asia, Europe and America. The aerial parts of H. officinalis have been traditionally used in the treatment of infections due to its antiseptic properties. In addition, it is carminative, stimulative, expectorant, antispasmodic, being used for the cure of colds, cough and asthma.⁵⁵ H. officinalis contains 1,8-cineole,^{55,56} α -glucosidase,^{57,58} cis-pinocamphone, pinocarvone, caffeic and chlorogenic acid.59,60 The essential oils obtained from Iranian H. officinalis have moderate antioxidant properties, but great antibacterial activity. The essential oil can be used as a natural antimicrobial agent, being effective for the inhibition of bacterial growth of different strains, especially Escherichia coli. The antibacterial and antioxidant activities of these essential oils could be partly due to the presence of some classes of compounds, such as monoterpene ketones, hydrocarbons, and oxides. Some studies recommend the use of the natural antibacterial and antioxidant agents derived from H. officinalis for application in the food industry.⁵⁶ Its antibacterial and antifungal properties have been also attributed to the presence of pinocamphone and isopinocamphone. The antiviral effect of the plant is probably due to the presence of caffeic acid, tannins, and unknown high molecular weight compounds.^{61,62} Other studies also report on its antioxidant,

antibacterial,^{56,59,63} antidiabetic,⁵⁷ anthelmintic⁶⁴ and antifungal activities.⁵⁹ It has drawn attention for the treatment of chronic bronchitis and asthma,⁶⁵ as well as due to its strong antiviral activity against HIV.^{61,66}Also, due to its content of α -glucosidase inhibitors, *H. officinalis* could be used to prevent and treat diabetes.

Curcuma longa L., also called turmeric, belongs to the Zingiberaceae family and is highly valued worldwide due to its medicinal and economic significance. More than 100 active compounds are found in this herb. The root contains volatile oils, such as tumerone, and coloring ingredients, known as curcuminoids.²⁷ The active constituents of turmeric are the flavonoid curcumin (diferuloylmethane), and its various volatile oils, including tumerone, atlantone. zingiberone, zingiberene. αphellandrene, cineol, sabinene, borneol, sesquiterpene, monoterpene,^{4,5} carotenoids and polyphenol compounds.⁵ In vivo and in vitro studies have shown that C. longa has significant pharmacological effects. In folk medicine, turmeric is used for respiratory diseases, such as allergies, liver problems, sinusitis and anorexia.^{4,67} C. longa is a good source of proteins, carbohydrates, fiber, and ash, and contains a considerable amount of Na, Mg, Ca, K, P, and Mn. Fresh and dried turmeric leaves present low nitrate levels, with no cyanogenic compounds, which makes their consumption safer for the consumers.⁹ A special emphasis was also given to the activity of curcumin in the case of intoxications and multiple malignant diseases.⁶⁸ In general, different studies have revealed that C. longa has anti-inflammatory,^{4,69} antioxidant,^{4,5,70} antitumor, antimicrobial, antitoxin, gastro-protective,^{4,71,72} and anti-carcinogenic⁶⁹ activities in the case of oral cancer, skin cancer and stomach cancer.^{4,73,74} It presents cyclooxygenase enzyme activity,^{75,76} and cardio-protective effects.⁷⁷ It has been also reported to have hepatoprotective, antiarthritic and hypoglycemic properties.^{78,79} C. longa has been examined for its benefits in the case of neurodegenerative diseases and for wound treatment.⁴ It has been established that this plant rises dopamine, norepinephrine and 5-HT levels in the central nervous system.⁸⁰ It demonstrated inhibition effects on apoptosis, platelet aggregation, cytokines production, reactive oxygen species production, oxidative brain damage, cytokines production, cognitive deficits in cell culture and animal models.^{75,76} C. longa has antifungal activities against

Trichophyton longifusus,⁸¹ and is antibacterial.⁸² Clinical trials proved the positive effects of curcumin on inflammation, skin, eye, central nervous system, respiratory, cardiovascular, gastrointestinal, urogenital and metabolic disorders.^{68,83,84} Braga *et al.* have cautioned that the plant could have nitrate toxicity.⁹

Ferula assa-foetida L. belongs to the Umbelliferae family and is a medicinal plant native to Iran, India and some regions of Afghanistan.⁷ There are two types of it: bitter and sweet. The plant is traditionally used for the treatment of different diseases, including asthma, epilepsy, intestinal parasites, influenza,⁸⁵ and to alleviate toothache.86 In Iranian traditional medicine, it has been used as an antispasmodic and carminative agent, and - due to its anthelmintic effect - for the treatment of bronchite vermineuse⁸⁷ and intestinal parasites.⁸⁸ *Ferula assa-foetida* is also known as "Anghouzeh", "Khorakoma" and "An-guzakoma" in Iran.^{89,90} The plant contains various chemical such as beta-pinene, constituents, Ecaryophyllene, elemicin, cedrol. mvrcene. ferulenol, ferulenol acetate, carvacrol, thymol, ferutinin, jaeschkeanadiol vanillate, kuhistanol D, kuhistanol A, (E)-1-propenyl sec-butyl disulfide, 1-(1-propenylthio) propyl methyl disulfide, and 1,2-di-thiolane.^{90,91} It is a good source of sesquiterpene coumarins.⁷ F. assa-foetida has been proved to have antimicrobial, antifungal, antibiofilm.85,90 antidiabetic and antihyperlipidemic effects,⁹² as well as antitumor,⁹³ sedative, diuretic, and emmenagogue activities.⁹⁴ It is a potential source for developing novel antimicrobial agents in order to control fungal and bacterial infections or to improve the quality and extend the shelf life of food products.⁹⁰

Datura stramonium L., belonging to the Solanaceae family, produces pharmaceutically tropane alkaloids, important including scopolamine and hyoscyamine, potent antagonists of the acetylcholine receptor⁹⁵ and have been used as a taxonomic criterion in chemotaxonomy studies.²¹ In recent years, *D. stramonium* has been used as a recreational drug due to its hallucinogenic and euphoric effects.²¹ Different alkaloids are obtained from the plant for medicinal purposes, to be used in the treatment of various groups of diseases, especially of the respiratory and muscular-skeletal systems. Several studies investigated the pharmacological activities of D. stramonium. It has been proven to

have anti-proliferative activity against human gastric adenocarcinoma and potential immunosuppressive effects,⁹⁶ cytotoxic activity in carcinomas of colon, breast and lung,⁹⁷ anticholinergic properties.²¹ It treats inflammation of the UVA and Parkinson's and painful spasms, promotes cyclopegia in cases of accommodative strabismus, and prevents motion sickness.²¹ It has antitumor and antimitotic activity.⁹⁸ Some authors propose the following mnemonic rule to remember the symptoms produced by poisoning by *D. stramonium*: "blind as a bat, mad as a hatter, red as a beet, hot as a hare, dry as a bone, bowel and bladder lose their tone, and the heart runs alone".^{95,99}

Ficus carica L. belongs to the Moraceae family, represents one of the greatest plants in this genus of angiosperms, which comprises more than 800 species of trees cultivated in tropical and subtropical areas, and it traditionally used for constipation, cough problems, piles, and diabetes. It treats the foot and mouth disease in livestock.¹⁰⁰ The main ingredients of F. carica are flavonoids, phenolic acids, phenolic compounds, anthocyanin,¹⁰⁰ tannins, alkaloids, glycosides, coumarins, triterpenoids, sterols and vitamin E.¹⁰¹ It also includes ficusin, vitexin, alpha-amyrin isovitexin, kaempherol, quercetin, acetate. naringenin, and blacalein.¹⁰¹ It presents antidiabetic, anticancer, anti-inflammatory,^{101,102} and antibacterial activities,103 and treats atopic dermatitis¹⁰³ and constipation^{105,106} in pediatric patients. It has been demonstrated to have antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Proteus vulgaris, Pseudomonas aeruginosa and *Escherichia* coli.^{103,107,108}

Artemisia absinthium L., from the Asteraceae family, generally known as wormwood, it is a perennial herb with fibrous roots, growing on non-cultivated, dry ground or rocky slopes and at the edge of footpaths and fields. It is usually used as an ingredient in the spirit absinthe, and as a flavoring agent in some other spirits and wines.¹⁰⁹ In folk medicine, it has been used for various infectious diseases, Crohn's disease or as an antimicrobial agent,110 it has also proved a hemorrhoid healing effect.¹¹¹ The main ingredients of A. absinthium are phenolic compounds,¹¹² acyclic monoterpenes, monoterpene hydroperoxide, bicyclic monoterpene, glycosides,¹¹³ β -thujon, p-cymene, ethyl-5,6-dihydro-1,4β-pinene and

dimethylazulene.¹¹⁴ Many investigations on *A. absinthium* proved that it has anthelmintic,^{64,114,115} antimicrobial,^{116,117} antioxidant,^{114,118} anti-feedant, anti-venom,¹¹⁹ and antitumor activities,¹²⁰ as well as hepatoprotective¹¹⁷ and neuroprotective effects,¹²¹ and with benefits in the case of cutaneous lesions.¹²² The plant has been demonstrated to have antiprotozoal effects against *Leishmania aethiopica* and *L. donovani*, as well as a caricidal, insecticidal and fungicidal activities.^{116,117}

Bunium persicum (Boiss.) B. Fedtsch. relates to the Umbelliferae family. Also called Kala zeera, it is a high-value herbaceous spice generally used for culinary, flowering, perfumery and carminative puposes.¹²³ *B. persicum* is a rich source of alkaloids, flavonoids, steroids, glycosides, phenols, saponins, terpenoids, and tannins.¹³ It is rich in cumin aldehyde and yterpinene, and also has trans-3-caren-2-ol, acetic acid, terpinolene, 1,3,8-p-menthatriene, hinokitiol (B-thujaplicin), estragole, pulegone, limonene, methyl eugenol, and bornyl acetate.¹²⁴ Its large amount of phenolic compounds, specifically, flavonoids, can explain its excellent antioxidant activity.¹³ γ -Terpinene, cumin aldehyde, ρ cymene and limonene cause high antimicrobial and antioxidant activities.¹²⁵ B. persicum is a rich source of oils, with different biological activities, such as antioxidative and antimicrobial ones.¹²⁶ Several studies revealed that B. persicum has antioxidant,¹³ larvicidal,¹²⁷ antimicrobial. antifungal. diuretic,¹²⁸ anti-tumor, antinociceptive,¹²⁹ antihematotoxic,126 antiinflammatory, antihistaminic, hypolipidemic, anticonvulsant, anticholinergic, antidiabetic and antidiarrheal¹²⁵ activities. Also, it has been demonstrated to have apoptotic activity on human leukemia cell lines.¹³⁰

Nigella sativa L., known as black cumin, is an annual flowering plant of the Ranunculaceae family, native to south and southwest Asia. Ancient people believed that it increased male potency and improved intelligence and memory,¹³¹ being also used to treat infertility, epilepsy,¹³² and liver disorders.¹³² *N. sativa* has two classes of alkaloids, including isoquinoline alkaloids, such as nigellimine-N-oxide, and pyrazole alkaloids, such as nigellidine and nigellicine,²² and also has proteins and saponins.¹³³ It also contains different compounds, such as thymoquinone, thymol, limonene, carvacrol,^{134,135} α -pinene, 4-terpineol, longifolene, t-anethole benzene, trans-anethole, alpha-thujene,

anisaldehyde, n-nonane, miristicine, sabinene, fenchene, apiol.^{134,136} Thus, it has proven effective anthelmintic, antiviral, antibacterial, antipyretic,^{137,138} moderate anti-mycotic,¹³⁹ antihyperglycemia, anti-hyperlipidemia,^{140,141} antiinflammatory, anti-oxidative,^{142,143} anti-cancer and anti-hypertensive activities.¹³⁷ Several studies¹⁴²⁻ ¹⁴⁴ have reported on its carminative and blood sugar lowering effects,¹³⁸ wound healing,¹³⁷ and ameliorating effects in the case of metabolic disorders.^{140,142} It has been found to bring benefits in rheumatoid arthritis, asthma, diabetes and digestive diseases,¹¹⁷ in addition to decreasing the water intake in rats with STZ-induced diabetes.^{143,145}

Cuminum cyminum L., belonging to the Umbelliferae family, is used in folk medicine as a stimulant, carminative and astringent agent, in cases of flatulence and diarrhea, and as a remedy against indigestion. It is also used to flavor foods and other products.^{37,41} It is a rich source of phenolic compounds, anthocyanins, flavonoids, alkaloids, coumarins, anthraquinone, glycoside, proteins, resins, saponins, tannins, steroids,^{15,17} cuminal, and cumin alcohol.¹⁷ Its essential oil contains pinene, cineole, linalool,⁵¹ carryone and contains pinche, theore, inaboli, cartvolle and cumin aldehyde.¹⁴⁷ Many scientists revealed that *C. cyminum* has antioxidant, antifungal, antimicrobial,^{17,37,146} antitumor, anti-inflammatory,¹⁴⁸ antihypertensive, hypocholesterolemic, antidiabetic and diuretic effects,¹⁴⁹ also being beneficial to inhibit platelet aggregation, as a bronchodilator, immunological, contraceptive, anti-osteoporotic,^{17,139} antidiarrheic, and antispasmodic agent.⁵¹ Due to its benign activities, it is used in the treatment of mild digestive disorders, bronchopulmonary disorders,¹⁵⁰ intestinal inflammation,¹⁴⁸ abdominal pain and bloating, as well as to heal fractures and body aches.¹³¹ Besides these, it also used for preserving various food products.¹⁴⁶ Moreover, C. cyminum does not have any significant toxicity and therefore has been considered as an efficient alternative to conventional antimicrobial agents to be included into packaging materials that come in contact with foods.³⁷ As the extract of C. cyminum contains many sensitive compounds, which can easily suffer degradation in the presence of oxygen, light and moderate temperatures, it has been a challenge to stabilize essential oil formulations.146

Glycyrrhiza glabra L. belongs to the Fabaceae family, and is among the oldest and most widely

used spices and medicinal plants in both Eastern and Western countries, especially in Iran and Europe.¹⁵¹ It has been used for the treatment of chronic hepatitis for more than 60 years in Japan, and also has therapeutic benefits against other viruses; it presents expectorant, anti-tussive, mild laxative, and anti-aging activities.¹⁵² G. glabra is a good source of flavonoids, alkaloids, steroids, terpenoids, saponins, tannins, glycosides, and triterpenoid saponins.8 The primary bioactive compounds of G. glabra have anti-androgen and phytoestrogen effects,¹⁵³ also presenting anticoagulant,¹⁵⁴ anti-bacterial, anti-inflammatory, antiulcer, free and hydroxyl radical scavenging, anticonvulsant, and anxiolytic activities.^{8,155} G. glabra has been used to treat coughs, bronchitis, constipation, gastric ulcer,^{143,156} and stomach pain, joint pain (back and leg), bone fractures,¹³¹ and stomach infection.^{148,156} Its anti-inflammatory effect occurs by inhibiting the migration of white globules and the production of inflammatory meditators and neutrophils.¹⁵⁷

Dracocephalum moldavica L. is an annual aromatic plant belonging to the Lamiaceae family. D. moldavica has been investigated due to its naturallv present components, such as germacrene, caryophyllene, α -copaene, δcadinene, ethyl nerolate, rosmarinic acid and phenolic compounds, such as luteolin and apigenin.^{158,159} Rosmarinic acid and phenolic compounds cause antioxidant,^{158,160} and antifungal activity.161

Arctium lappa L. belongs to the Asteraceae family. Commonly known as burdock, it has been widely consumed as a vegetable and due to its medicinal properties in East Asia for centuries.¹⁶² A. lappa has been traditionally used for the treatment of acne, dermatitis, diffuse skin telangiectasia (hepatic diseases), skin infections, purulent wounds, furuncles, venereal diseases, hyperhidrosis, skin inflammation, mouth diseases, alopecia and dry scalp seborrhea. A. lappa contains many interesting compounds, such as amino acids, nucleotides, vitamins, flavonoids, terpenoids, polyphenols, oligosaccharides, polysaccharides, and polyunsaturated fatty acids.²⁴ Due to its composition, A. lappa has a wide range of medicinal properties, such as antiinflammatory,^{164,165,170} anti-burning sensation, anti-infective, depurative, hemostatic, hair tonic, analgesic,¹⁶⁴ anticancer, antidiabetic, antiviral,¹⁶³ antibacterial against both Gram-positive and Gram-negative bacteria,¹⁶⁶ and hepato-protective effects.^{167,168} The plant has been utilized in the

treatment of different cancer types (breast, ovary, bladder, pancreas), malignant melanoma and lymphoma. It has been established that it relieves the pain, lessens the tumor size and enhances the survival phase.¹⁶³ A. lappa was also assessed due to its anti-mutagenic properties in lung, kidney, brain and testicles tumors. Most studies on the bioactivities of A. lappa have focused on its low molecular weight phytochemicals, such as arctigenin, arctiin, tannin, B-eudesmol, caffeic acid, chlorogenic acid, lappaol and diarctigenin.¹⁶⁹ The synergistic anti-inflammatory and protective effects of the associated A. lappa extracts were investigated in the management of the inflammatory response in a COPD model.¹⁶⁵

Punica granatum L., known as pomegranate, is a fruit-bearing shrub belonging to the Punicaceae family. It is native to Afghanistan, China, Iran and India, but it is also cultivated in the Mediterranean region.¹⁷¹ The fruit is widely used in making juice, despite some concern about its inedible part, the peel, which represents approximately 77%. Pomegranate peel is popularly used as traditional herbal medicinal products. It is a rich source of tannins, flavonoids, polyphenols, and some anthocyanins, as delphinidins and cyanidins.¹⁷² Several studies that pomegranate peel has demonstrated significant anti-infective. anti-oxidative, antimicrobial, anti-atherogenicity, hepatoprotection, antidiarrheal, anti-atherogenicity, and anti-mutagenic characteristics.¹⁷³ It is a potential agent for the treatment or prevention of inflammation and cancer.¹⁷⁴ Polysaccharides from pomegranate peel have antioxidant and hepatoprotective activities.¹⁷³ Pomegranate has antiand cardiovascular urolithiatic protection roles.^{175,176} The antibacterial¹⁷² properties of pomegranate peel in *in-vitro* model systems have been reported. Pomegranate fruit powder was found to stimulate the cell-mediated and humoral components of the immune system in rabbits, at the dose of 100 mg/kg, administered orally as aqueous suspension. Pomegranate additionally improved the inhibition of leucocyte migration in leucocyte migration inhibition tests and induration of skin in delayed hypersensitivity tests.

Lawsonia inermis L., known as Henna, belongs to the family of Lythraceae and is a well-known antimalarial medicinal plant.¹⁷⁷ Henna is widely used by cosmetics manufacturers.¹⁷⁸ Its leaves have been widely used as a dye for hands, feet, hair, and textiles.¹⁷⁸ Henna is a good source

of coumarins, naphthoquinones and a variety of flavonoids,²³ several types of acacetin, luteolin, apigenin, appin, cosmossin, isoscutellarin, lawsochrysin and catechin. It is also a precious source of volatile and non-volatile terpenes. Lawsaritol steroids and two alkaloids named harmine and harmaline have been also found in henna.²³ Several researchers have investigated the plant's pharmaceutical properties. They revealed that it has antimicrobial,^{179,180} anticancer,^{181,182} antibacterial,²³ antimalarial,^{177,179} antiviral,¹⁸³ antifungal against human pathogens,¹⁸⁴ antidiabetic, anti-inflammatory,¹⁸¹ antidiabetic, anti-inflammatory,¹⁸¹ antioxidant,^{178,181} anti-ulcer, anti-tubercular,¹⁸⁵ and hepatoprotective,¹⁸⁶ activities. Henna has a potent activity of wound healing.^{23,187,188} Henna has the capacity of preventing linoleic acid oxidation,¹⁸⁹ moisture loss, skin cracking, chronic ulcers and discomfort in the feet of diabetics.²³ Henna also contributes to enhancing memory.²³ An acute toxicity study of henna carried out in Sprague-Dawley rats proved the median oral lethal dose as above 2000 mg/kg.¹⁹⁰

Ziziphus Jujuba Mill. belongs to the Rhamnaceae family and is widely distributed in the subtropical and tropical regions, particularly in Australia, southern and eastern Asia, and Europe.¹⁹¹ Diverse active ingredients were found in it, such as polysaccharides,¹⁹¹ oleic, linoleic, palmitic. palmitoleic,²⁵ p-coumaric, cinnamic, caffeic, chlorogenic, ferulic, p-hydroxybenzoic and vanillic acids, as well as quercetin, rutin, quercetin-3-galactoside, quercetin-3-rutinoside, kaempferol-glucosyl-rhamnoside, epicatechin, catechin, and B2.²⁵ procyanidin Many investigations have revealed its antifungal, antibacterial, antioxidant, anti-ulcer, anti-tumor, anti-stress, hepato-protective, hypoglycemic, antiinflammatory, sedative, cytotoxicity, immunestimulating, gastrointestinal protective, ^{191,192} and anti-insomnia activities.193

Pimpinella anisum L. belongs to the Apiaceae family, and is a medicinal and aromatic plant widely cultivated in Asia, and the Mediterranean area. *P. anisum* is among the most extensively used plants for infant healthcare. Traditionally, it has been used as carminative, expectorant, sedative, antidepressant, insecticidal, antiviral, antispasmodic, nematocidal, mutagenic, diuretic, estrogenic, antimalarial, and pectoral stimulant. It has been reported for the treatment of abdominal pain and flatulence. Other woks reported on its antioxidant, antiseptic,^{58,194} anti-inflammatory,¹⁹⁴ analgesic, antifungal, anti-diabetic and anti-

convulsing activities. Enzyme inhibitory or stimulant, and hypothermic activities are the other most important effects of the plant. Moreover, *P. anisum* is used in the treatment of renal colic, intestinal colic, and upper respiratory tract problems,¹⁹⁵ for the treatment of gastrointestinal disturbances, bronchial asthma, insomnia, persistent cough, and epilepsy.¹⁰⁰

Artemisia dracunculus L., commonly called tarragon, belongs to the Asteraceae family, and consists of around 500 species distributed all over the world. The composition and biological effects of the essential oil (EO) of A. dracunculus have been widely studied. In Iranian folk medicine, it is used as an antiepileptic, anticonvulsant, and sedative agent, these effects being related to the presence of monoterpenoids.¹⁹⁶ The maior constituents are sabinene and estragole, as well as alkamides, pellitorine, neopellitorine A, and neopellitorine B.²⁰ Estragole is responsible for the genotoxicity and carcinogenicity activities of the oil.¹⁹⁷ Tarragon has been extensively used in traditional medicine and as part of the human diet for centuries. Its medicinal uses are also related to its moderate antimicrobial inhibitory effect, anticoagulatory, antihyperlipidemic,¹⁹⁸ antidiabetic, 196,199 antifungal, allopathic and insecticidal activities.

Citrus aurantium and C. aurantiifolia, of the Rutaceae family, like most of the Citrus genus, are native to tropical and subtropical Southeast Asia. C. aurantium, or bitter orange, is traditionally used for consumption. It has been reported to contain coumarins, limonoids, flavonoids, tetranortriterpenoids, monoterpenoids, and acridone alkaloids.⁶ Limonene, acriquinoline A and acriquinoline B have been found to be the major constituents of its essential oil.⁶ Other studies have also mentioned the presence of citpressine I, citpressine II, citruisinine II, citracridone II, 5-hydroxynoracronycine, 8hydroxy-6-methoxy-3-pentylisocoumarin, xanthyletin, clausarin, (E)-suberenol, transgleinadiene, methoxysuberenol, fridelin, lupeol, limonin, stigmasterol, β-sitosterol, and β-sitosterol-3-O-β-D glucoside in C. aurantium.²⁰⁰ A number of authors have established its beneficial health effects, including its antioxidant,^{201,202} anti-inflammatory,²⁰¹⁻²⁰³ anticancer,^{203,204} antiseptic, antispasmodic, aromatic, astringent, carminative,²⁰³ cytotoxic, antimalarial, antimicrobial, anti-allergic, anticonvulsant properties and antiplatelet aggregation activity.^{205,206} The acetyl group in the phenolic compound plays an important role in its antioxidant activity and the cytotoxicity activity against NCI-H460 and CAL-27 cell lines.²⁰² Also, herbal supplements with *C. aurantium* are recommended due to its slimming effect.^{203,204} It has also been used in treating anxiety and other central nervous system disorders,²⁰⁷ gastrointestinal disorders, insomnia, headaches, cough, muscular pain, nausea, ringworm infection and hypertension.²⁰³

C. aurantiifolia is traditionally used as food flavoring and as facial wash to rejuvenate the skin. The most important secondary metabolites limonoids, include rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid.²⁰⁸ Its antimicrobial,^{209,210} antiviral,^{208,209} antitumor, anti-carcinogenic, immunomodulation, analgesic, anthelminthic, anti-mutagenic,^{211,212} and antifungal²¹³ activities have been reported. C. aurantiifulia has been found to inhibit human pancreatic cancer cells and viral infection.²¹⁴ Limonin, present in C. aurantiifulia, has been shown to possess anti-carcinogenic properties in in vivo rodent models, demonstrating cytotoxic activity.²⁰⁸ Also, it reduced the incidence of 7,12dimethylbenz(a)anthracene (DMBA) induced buccal pouch epidermoid carcinomas in female Syrian hamsters.²¹²

Echium amoenum Fisch. & C.A. Mey. is known as Iranian borage and is a member of the Boraginaceae family. There are 4 species of the genus Echium growing in Iran, but only E. amoenum has medicinal uses. It also grows in most of Europe and in the Mediterranean region. The traditional medicine in Iran uses the plant as a remedy for cough, sore throat and pneumonia, due to its anti-inflammatory and analgesic effects, but also as an anxiolytic and sedative.^{159,215} Pyrrolizidine alkaloids, such as echimidine, echimidine isomer, 7-angeloyl retronecine, 7tigloyl retronecine and rosmarinic acid, were identified in this species.¹⁵⁹ Its antidepressant, demulcent, atonic, tranquillizer, and diaphoretic activities have been discussed.²¹⁶ Also, E. amoenum exhibited high inhibition capacity towards some key enzymes that are considered as triggering major health problems.²¹⁷

Malva sylvestris L. species, known as common mallow, belongs to the family of Malvaceae.²¹⁸ It has strong antioxidant properties, including radical-scavenging activity,^{12,219} as well as lipid peroxidation inhibition in liposomes. It is a good source of natural antioxidant compounds, such as phenols, flavonoids, carotenoids,

tocopherols;¹² also. sesquiterpene, leucoanthocyanidines, anthocyanidines, coumarins, anthocyanin have and been reported.220 Malva sylvestris possesses bacteriostatic, antinociceptive, and anticholinesterase activities; it is used in the treatment of inflammation, urinary, digestive, and respiratory disorders.²⁰⁵ Young leaves are used for skin injuries, burns, diarrhea and stomach disorders, as well as rheumatism; shoots - for toothache, genital tract diseases, hemorrhoids and constipation; leaves and flowers - for colds, cough, sore throat, tonsillitis, bladder dysfunction and rheumatism; and finally, seeds are used for skin inflammation.¹² In general, the plant extract has cardioprotective,²²¹ anti-inflammatory,²²² and anti-psoriatic activities,²²² being also used for the treatment of colitis and stomatitis.²²³ High amounts of ascorbic acid, carbohydrates and particularly sugars, such as fructose and glucose. were revealed in mallow. Further, the presence of malvidin 3-glucoside, scopoletin and quercetin suggested its anti-inflammatory activity.²²⁴

Boswellia serrata Roxb. ex Colebr. belongs to the family of Burseraceae.²²⁵ Traditional Uman and Chinese medicine believes that it contains anti-inflammatory, analgesic, antihyperlipidemic, substances.226 anti-bacterial and sedative Pentacyclic triterpenoids, tetracyclic triterpenoids and macrocyclic diterpenoids are the main Boswellia.226 constituents of Several investigations have inflammatory,^{225,227,228} demonstrated its antianti-arthritic,²²⁸ hypolipidemic, immune-modulatory and antitumor activities.²²⁵ It also has moderate hepatoprotective activity against D-galactosamine-induced HL-7702 cell damage.²²⁶

Fraxinus excelsior L. belongs to the Oleaceae family and is a major charismatic tree species in Iran, Ireland, south Scandinavia and northern Spain.²²⁹ Its phytomedicinal uses are due to its anti-oxidative,²³⁰ anti-hepatitis, anti-ulcer,²³⁰ antifibrotic, hepato-protective and liver regenerative,²³¹ anti-atherosclerosis, antimicrobial, anti-inflammatory, immunomodulation, hypocholesterolemic potential. It has been reported as a potent inhibitor of cyclic AMP phosphodiesterase activities.^{230,231} *F. excelsior* is a source of glucoside, esters potent of hydroxyphenylethyl alcohols, lignans, flavonoids, simple phenolic compounds and coumarins, such as esculin and fraxin.²²⁹ F. excelsior is also used for the treatment of rhinitis, stomatitis, toothache,

pyrexia and urinary organ infections in humans,²²⁹ as well as fungal diseases in trees.²³²

Ziziphus spina-christi (L.) Desf. belongs to the Rhamnaceae family, and is cultivated in subtropical and warm-temperate areas, all around the world, being commonly used in folk medicine for the treatment of various diseases. It has been found to contain nerolidol,²³³ epigallocatechin, gallocatechin and spinosins,²³⁴ saponins, phenolic compounds,²³⁵ quercetin 3-O-robinobioside, quercetin 3-O-rutinoside, kaempferol 3-0rutinoside, and quercetin 3-O-b-D-xvlosvl-a-Lrhamnoside.²³⁶ Several studies have revealed that has anti-cancer and anti-inflammatory it activities,²³⁴ antibacterial, anthelminthic and antidiuretic properties, as well as cytotoxicity effects. Epigallocatechin, gallocatechin and sapinosins are responsible for the antiinflammatory activities in natural extracts.²³⁴

Myrtus communis L., which belongs to the Myrtaceae family, is a green scrub typical of the Mediterranean region, which grows spontaneously in many countries. Flavonoids, such as myricetin, quercetin, catechin,^{16,237} anthocyanins, 16,238 cyclitols, arabinogalactan, glucose, organic acids and oligosaccharides,²³⁸ terpinolene, tannins, such as gallotannins,¹⁶ and phenolic acids, such as gallic acid and caffeic acid,¹⁶ have been reported for this plant. It has been established as having significant antiinflammatory,²³⁷ hyperglycemic,²⁴⁰ antifungal,²³⁹ antihyperglycemic,²⁴⁰ antiseptic,²⁴¹ antimicrobial, antiviral, antioxidant,^{242,243} and anti-mutagenic activities.

Silybum marianum L., belonging to the Asteraceae family, is a valuable medicinal plant traditionally used as a remedy for liver diseases, disorders.²⁴⁴ and gallbladder neurological disorders, including depression, and Alzheimer's disease.²⁴⁵ The plant has been found to contain flavonoids, such as taxifolin, silychristin, silydianin, silybin A, silybin B, isosilybinin A, isosilybinin B, and most importantly, silymarin.²⁴⁵ Silybum marianum is a good source of antioxidant,^{246–250} anti-diabetic,²⁴⁹ anti-aging,²⁵⁰ anti-amnesic, anti-Alzheimer,²⁴⁸ anti-hepatotoxic and chemo-preventive substances. It protects the liver from toxins scavenging,^{247,251} and free radical has and also hypocholesterolemic effects.²⁴⁶

ENCAPSULATION OF HERBAL EXTRACTS

Encapsulation technology

Encapsulation is a promising technology that has recently attracted renewed scientific interest for extending its applications in many different domains, starting from the pharmaceutical industry,^{252–254} to cosmetics and personal care products, the food industry, construction, textiles, chemistry, and agriculture.²⁵⁵ The encapsulation approach has been applied to develop a significant number of novel products on several markets, including aromatherapy, agrochemicals, paints, coatings, colorants, adhesives, biocides, nutraceuticals, oil and gas, paper systems, electronics and imaging systems.

Encapsulation lies in coating different substances within another material. Different micro/nano encapsulation methods have been used in industrial applications.^{256,257} The encapsulated material is commonly referred to as the inner phase, the core material or filler.^{255,258} The encapsulating agent is known as the external phase, the shell, coating or membrane.^{259–262} The core includes the active ingredient, for example, drugs, odors, biocides, vitamins, etc., while the shell isolates and protects the nucleus from the surrounding environment, and is often prepared from different biopolymers, as will be further discussed below.^{263,264} The main reasons for encapsulation, in all industries, include the protection of the active ingredient, by the encapsulating agent, from oxidation or deactivation, caused by environmental conditions; the enhancement of the bioavailability of a natural product in the human body, especially in the gastrointestinal tract; the controlled and targeted release of encapsulated active compounds, and their increased stability. Encapsulation processes can have the following advantages: conversion of liquids to solids; safe handling of toxic materials; separation of incompatible materials; masking the organoleptic properties such as color, taste, odor of substances; reducing the potent toxicity of drugs; reducing drug dosage; providing targeted and sustained release of the active agent; improving adhesion, penetration and release of the active principles under physiological changes in pH and temperature.265

Therefore, encapsulation requires consideration of two main factors: first, the

selection of an appropriate encapsulating agent for the preparation of a suitable encapsulation system, and second, the selection of an appropriate encapsulation technique. Numerous techniques have been investigated to encapsulate natural active compounds extracted from medicinal plants for therapeutic purposes. The more commonly reported methods are shown in Table 1.

Nano/micro encapsulation

Considerable research efforts have been directed towards developing safe and efficient encapsulation techniques. Nano/microtechnology is a multidisciplinary area of research, including materials engineering, biotechnology, physics and pharmacy, among others, focusing on the development of structures of nano/micro-sizes. Nanocapsules have sizes ranging from 1 to 1000 nm, while microcapsules – from 1 to 1000 µm; they can have a multitude of forms, depending on the substances and techniques used to prepare them.^{263,264} The pharmaceutical nanotechnology has allowed the development of innovative drug release systems, which resolved many of the issues related to the administration of conventional therapy.

Encapsulating agents

Encapsulating agents play an important role in the efficiency of delivery systems. Current investigations successfully reported new combinations of different biopolymers or new encapsulating agents to enhance the properties of encapsulation systems and improve the protection of the bioactive agent, with better encapsulation functionalities and enhanced release profile.263 Many different materials have been investigated to develop encapsulating agents; they must be selected depending on the significant features required for each proposed use. The most reported materials commonly used for encapsulation in the food and pharmaceutical industries are polysaccharides, proteins, lipids, and other organic and inorganic materials, as tabulated in Table 2.

Emulsion systems have been used for the encapsulation and successful delivery of different compounds. Emulsifiers play a significant role in the preparation of emulsions, which is generally regarded as an essential procedure to improve the shape, size, texture, stability and target release.²⁶⁶ Emulsifiers can be divided into two classes: artificial emulsifiers and natural ones. In recent years, natural emulsifiers have become more relevant in the food industry due to their nontoxicity, excellent accessibility, and plentiful sources.

Encapsulation method	Properties	Ref.
Anti-solvent precipitation	• Simple, comparatively cheap, simple scale-up, non-toxic, non-flammable and chemically stable	250, 272
Complex coacervation	 Uses two or more biopolymers; Simple, high core loading capacity, high encapsulation efficiency and excellent control release 	273
Electrospinning and Electrospraying	• Simple, versatile, cheap, non-thermal method, enhanced oxidative stability and controlled release profile	274
Emulsification (Emulsion/ nanoemulsion)	 Includes two main techniques: single emulsion (O/W-W/O), double emulsion (W/OW-O/W/O); Good for encapsulation of both hydrophilic and hydrophobic structures; Encapsulation efficiency of up to 48% and 40-80 nm particle size 	276
Extrusion	 Used for hydrophilic and hydrophobic compounds, as well as oil; Increases the bioavailability of poor-water soluble compounds, time controlled, thermoliable 	277
Fluid bed coating	 Time-consuming technique, low cost, low operational cost, and high thermal efficiency; allows total temperature control; Encapsulates solid core materials 	258
Freeze drying	 Used for heat sensitive compounds, stabilizing nanoparticles, improves the stability of active compounds; better encapsulation efficiency; Improves oral bioavailability, increases the solubility of a poorly soluble structure 	278

Table 1 Most relevant encapsulation methods

Liposome/nanoliposome	Can entrap a wide range of natural active compounds	256		
	Enhances bioavailability;			
	• Enhanced capacity to cross the lipid-rich biomembranes and reach circulation;			
Dhytosomo/	 Enhances the absorption of lipid insoluble polar phytoconstituents; 			
nanophytosome	 Substantially greater clinical efficacy; 	279		
nanopitytosome	Phytosome shows better stability profile owing to the chemical bonds formed			
	between the phosphatidylcholine molecule and phytoconstituents;			
	• Widely used in cosmetics due to better skin penetration and high lipid profile			
Solid dispersion	 Used for poorly water-soluble compounds (lipophilic); 	280		
	 Increases bioavailability, decreasing particle size, improving wettability 			
	• Simple, rapid, improves the retention of heat sensitive compounds, improves the	256,		
Spray drying	stability of most natural compounds;	281, 282		
	Converts a suspension of colloidal nanoparticles into nanostructured powder			
	 Based on the preparation of a solution, sol and gel, solidification and heat 			
	treatment of the organic and inorganic compounds, improves the stability of most			
Sol-gel	enzymes;	263		
Son Ber	 Easily scaled up, even considering the tight cost-in-use; 			
	• Used for the immobilization of lipase enzymes within a phyllosilicate and			
	vinyltriethoxysilane			
Suspension cross-	 Droplets are fixed by covalent binding and converted to capsules; 	263		
linking	• Simple, rapid, improves the stability of most proteins and polysaccharides			
	 Combination of spray drying and freeze drying; 	202		
Freeze spray drying	 More efficient than both methods; 	285		
	High oral bioavailability and high thermal stability of natural compounds			
Solid lipid nanoparticle	 Improves the performance of poorly water-soluble bioactive compounds, 	284		
(SLN)	solvent-free, long-term stability			
Nanostructured lipid	 Improves the performance of poorly water-soluble bioactive compounds; 	285		
carriers (NLC)	High drug loading, encapsulation efficiency, long-term stability, solvent free			
Inclusion complexation	• Drying method, increasing bioavailability; formation of inclusion complexes in	286		
	the solid and the solution states			
	• High encapsulation efficiencies (>90%), for both lipophilic and hydrophilic	297		
Thermal gelation	n compounds;			
	 Bioactive, non-toxic; can encapsulate different bioactive compounds 			

Table 2
Most frequently used biopolymers as encapsulating agents - categories and properties

Enconculating agent	Properties					
Encapsulating agent	Polysaccharide-based					
	• DE value of 20; different types (white dextrin, yellow dextrin, brown dextrin);					
Dextrins	• Water soluble and hydrolyzed starches;					
	 Applied in encapsulation of water-insoluble flavorings and oils 					
	• DE value of <20;					
Maltodextrin	• Hydrolyzed starch, highly water soluble (~70%) and low viscosity in solution;	282, 289, 290				
	• Improves emulsifying characteristics, reduces the oxygen permeability of the wall matrix, enhances the bioactive retention and controls the release profile					
β-Cyclodextrin	 Formulation structure with a hydrophobic cavity inside and hydrophilic external surface; allows molecular inclusion; complexes with poorly water-soluble molecules to enhance the molecular colubility. 	291, 292				
Hydroxypropyl cyclodextrin	 Most abundant natural cyclodextrins, inclusion complexation behavior, highly affects the size, shape, hydrophobicity and the form of the guest molecule; Improves the solubility, chemical stability and bioavailability of some poorly soluble compounds 	293				
Cellulose Carboxymethyl	• Water-soluble, a biodegradable and biocompatible derivative of cellulose;	294				

	cellulose (CMC)	• Used for stabilizing, thickening, binding, tableting, and encapsulation of active	
	(CIVIC)	compounds, to enhance stability and bioavailability of active compounds	
	Methylcellulose	• High solubility, efficient oxygen, and lipid barrier properties;	294
		• Excellent film-forming characteristics	
	Cellulose	• Water-soluble, offers masking of colors and undesirable tastes, protective wall	295
		membrane for the encapsulated core;Protective wall membrane for the encapsulated core and enhanced aesthetical appearance	
	Hydrox ypropyl cellulose	Water-soluble;Good film-forming ability, acts as a wall to oil and fat	291
	Cellulose acetate	Improves encapsulation efficiency	296
	Ethyl cellulose	 Only used in oral formulations, non-ionic, non-irritant, biocompatible and compatible with many celluloses and resins; Water-insoluble, soluble in many organic solvents such as alcohol, ether, ketone <i>etc.</i> Biodegradable, stable against light, heat, oxygen, moisture and chemicals, Good flexibility and mechanical strength in a wide range of temperatures, non-swellable 	297
Pectin		 Extracted from peels of citrus fruits; Anionic and linear polysaccharides; Non-toxic, not digested in upper gastrointestinal tract by gastric or intestinal enzymes and poorly soluble in such condition; High retention of mangiferin in microencapsulated particles; Improves the physicochemical stability; Enhances the sustained release of lipophilic compounds 	298– 301
Chitosan		 Linear cationic polysaccharide; Second most abundant natural biopolymer after cellulose; Non-toxic, biodegradable, biocompatible, film forming and antibacterial characteristics; Improved encapsulation efficiency and stability 	301– 303
Modified c	hitosan	Water-insoluble, non-toxic, biodegradable, biocompatible, film forming;Improved encapsulation efficiency and stability	256
Alginate	Calcium alginate Sodium alginate	 Non-toxic, biocompatibility, hydrophilic, linear anionic polysaccharide; Rapid dissolution behavior at intestinal pH or the presence of sodium ion 	304, 305
Gum	Arabic gum Xanthan gum Seaweed gum	 Non-toxicity, biodegradable, biocompatibility, safe for the human body; Potential capacity to encapsulate flavors, aromas, phenolic compounds, antioxidant agents and nutraceutical compounds 	290, 306– 308
Sucrose	(carrageenan)	 Good solubility in water, non-hygroscopicity, low cost; Used as a matrix for encapsulation of food ingredients and long shelf-life at ambient temperature 	309
		Protein-based	
Whey prot	ein	• Usually used as hydrogel, nanoparticle system, conservation; 310–312	
		,	

		 High encapsulation efficiency (around 100%) and loading capacity (about 100%) 	
Casein		 Extracted from milk, includes α s1-casein, α s2-casein, β-casein, and κ-casein; Low viscosity in solution, slight flavor, high nutritional value; Very useful for encapsulation of hydrophobic compounds. 	313, 314
Gelatin		Water retention and film formation ability, biocompatibility, biodegradability and fast release	315–317
Soy protei	n	• Emulsification, water binding potential, fat absorption and nutrient protection against oxidation	318
	Zein	 Known as prolamine and extracted from maize; α, β, δ, Y zein types; Water soluble, biocompatible, biodegradable, self-assembly, inherent hydrophobic property 	319-321
	Wheat protein	 Contains gliadin and glutenin compounds; Less water solubility, gel formation ability; Potent ability and stability maintenance to encapsulate fish oil 	322, 323
Cereal	Barley protein	 Contains hordein and gluten endosperm; Excellent emulsification properties and highly hydrophobic; Potential ability to encapsulate fish oil with high efficiency and high loading capacity. 	324, 325
protein	Potato protein	 Inexpensive and non-allergic; Potent antioxidant activity, foaming, and emulsifying ability 	326
	Amaranth	 Contains high protein, amino acid and prolamine content (safe for the human body); Good emulsifying, foaming, gelifying, film-forming, water retention capacity, and low-cost material 	327 327, 328
	Pulse protein	 Contained in peas, chickpeas, lupins, and lentils; Good emulsifying, foaming and entrapping efficiency; Rich in protein, iron, potassium, folate, and fiber; Low in fat and cholesterol 	329
		Lipid-based	
Soybean le	ecithin	• Less toxicity;	
Egg lecithin		• Excellent function, emulsification, film formation, and	
Phosphtidyl Choline		_ encapsulation;	
Serine		- • Biodegradable, biocompatible, excellent stability, high protection;	330-332
Cholesterol		 Significantly improves oral bioavailability; Self-assembling, emulsification, wettability; Potent for encapsulating both hydrophobic and hydrophilic natural active compounds 	

Advantages of encapsulating natural compounds

The micro/nano encapsulation of natural active substances for controlled release or drug delivery applications is a promising approach for solving some of the significant problems inherent to such applications. The most suitable methods for encapsulating various natural products vary depending on the active compounds and the encapsulating agents used. Table 3 presents some of the most relevant studies on the encapsulation of different extracts from Middle East medicinal plants, detailing on the active agent, the method encapsulation selected and the encapsulating agent, as well as providing a brief explanation of the preparation procedure.

The research works included in Table 3 demonstrate the advantages of the encapsulation

technology as applied to active compounds of medicinal plants. Thus, Kyriakoudi et al. reported on preparing Crocus sativus nanoparticles by the spray drying method, highlighting the advantages thus-achieved - an increase in the stability of crocins and picrocrocins under thermal and gastrointestinal conditions,²⁶⁷ which can be beneficial for the application of saffron in the pharmaceutical and food industries. Another study also verified an enhancement in the bioavailability, bioaccessibility, and stability of saffron bioactive components by spray drying encapsulation.²⁶⁸ Other authors revealed that Z. essential oil encapsulated into multiflora nanoliposomes can have a higher antibacterial effect in comparison with the free form of the plant's essential oil.²⁶⁹ Garg *et al.* reported on the pronounced beneficial effects of curcumin in hamster buccal pouch cancer - it decreased cell proliferation and modulated various cellular responses during tumorigenesis - but pointed out its poor absorption in *in vivo* studies.⁷³ Further, some other researchers encapsulated the bioactive compounds of Curcumin longa - curcuminoids into nanoparticles and found their significant antioxidant and cytotoxic effects, as the encapsulated curcuminoids acted the on cholinergic and endogenous antioxidant systems.²⁷⁰ The authors concluded that improved the encapsulation activity of curcuminoids in aqueous medium, in contrast to their original form, which could be explained by the improved water affinity and the reduced size of the nanoparticles. Another study focusing on

silymarin demonstrated that the development of a buccal liposomal delivery system allowed an increase in drug penetration and bioavailability of silymarin in comparison with the free silymarin powder.²⁷¹

Thus, the encapsulation technology allows the development of novel delivery systems that ensure the stability and efficiency of natural compounds, as well as their delivery to the target site. The advancements in this technology will increase the efficiency and bioavailability of active agents, but also can widen the range of applications for the encapsulated products, opening new possibilities to develop a new generation of goods.

Medicinal			Encapsulating	D : <i>A</i> = <i>A</i>	
plant	Core compound	Method	agent	Brief explanation	Ref.
Punica	Polyphenols and anthocyanin	Spray drying	Maltodextrin Soybean protein isolate	Inlet temperature: $140-160 \pm 5$ for MD and $100-140 \pm 5$ for SPI, flow rate: 600 Lh ⁻¹ , 10 mLmin ⁻¹ Atomization pressure: 20 psi	333
granium	Nodal segments of pomegranate	Coaservation	Sodium alginate		334
G	Essential oil	Emulsification	Chitosan	Emulsion in water with Tween 80	335
Satureja khuzistanica	Total extract	Solution (emulsion)	Hydrogel alginate	Dried with NaCl	336
Satureja rechingeri					
	Anthocyanin	Freeze drying	Arabic gum and maltodextrin	Freeze drying conditions: (-86 °C, Operan-Korea) at 5 mmHg pressure for 42 h; Porous solid materials were crashed in a pestle and mortar, and passed through 25 Mesh sieve and immediately transferred into brown glass containers with screwed caps, then stored in a freezer (-18 °C)	337
Crocus	Crocins and picrocrocin	Nanospray drying	Maltodextrin with dextrose	Keep away from direct light and the feed solution was kept in an ice bath. Nozzles with 4.0µm and 7.0µm spray mesh were used.	267
sativus	Crocins	Suspension	Maltosyl-b- cyclodextrin		338
	Crocin	Solution	Maltosyl-b- cyclodextrin		339
	Saffron extracts	Spray drying	Maltodextrin, Arabic gum and gelatin	Inlet and outlet air temperature: at 180 ± 5 °C and 90 ± 5 °C, respectively. The air flow, rate of feeding and atomization pressure: 600 l/h, 5 ml/min and 20 psi, respectively	268
Zataria multiflora	Essential oil	Oil-in-water emulsion and ionic gelation	Chitosan	Various contents of carvacrol, <i>i.e.</i> , 0, 0.12, 0.24, 0.36, 0.48 and 0.60 g, used to obtain different weight ratios of chitosan to carvacrol of 1:0, 1:0.25, 1:0.50, 1:0.75, 1:1.00 and 1:1.25, respectively. TPP solution (0.5% w/v, 40 mL) was slowly dropped into an o/w emulsion while stirring; agitation was continuously done for 30 min. The final pH of mixture solution was ~5.0. The particles were collected by centrifugation at 10,000 rpm for 10 min at 25 °C	340, 341
	Essential oil	Ionic gelation (CSNP)	Chitosan	pH: 5.6 with NaOH	342
	Essential oil	Nanoliposomes	Soybean phosphatidyl	The lipid film was hydrated with phosphate buffer saline (PBS); (pH 5-7.4)	269

Table 3
Middle East medicinal plants reported in micro/nanoencapsulation studies

			choline and		
			Sov bean		
			lecithin		
			(consisting of		
			primary phosphatidyl		
	Total phenolic	Liposome	choline.		341, 343
	compound		phosphatidyl		
			ethanolamine		
			and		
			inositol)		
Froriepia					
subpinnata					
officinalis					
ojjientans		Solid lipid	Lecithin		
	Curcumin	nanoparticles	(phosphatidyl		344
		SLN	choline), Tween 80		
		0 11 1 1	Polyvinyl		270. 344
	Curcuminoids	Solid dispersion	pyrrolidone		270, 511
		Weter in Oil	Sodium		
	Total extract	Find the second second	alginate and carboxymethyl	pH: 5.6	345
		Linuision	cellulose		
-		Solid lipid-	Aerosol 200 as		
Curcuma		based self-	solid carrier,		
ionga	Curcumin	using spray	FCC Labrasol		346
		drying	and Transcutol		
			HP as oil phase		
				Flow rate of microencapsulating composition, Wff,	
	Curcumin	Spray drying	Edible gelatin	180, 190, and 200 °C; drying air flow; 50, 60 and	347
	pigments		and staren	70m 3/h. Samples of the spray-dried particles were	
		Solid dispersion		collected during the experiments	
	Curcumin	obtained by	PVP		348
		spray drying			
Ferula assa-		Oil in water			349
foetida		(traditional)			
Datura		(truthtohu)			
stramonium					350
Fravinus	Total extract	Spray drying	Arabic gum		550
excelsior	Embryos	Solution	alginate and		351
		(Ms medium)	Sucrose		
	Embryos	Solution	Sodium		352
Ficus carica		(Ms medium)	Sodium		252
	Embryos	Ms medium	alginate		555
Artemisia	Essential oil	Nano cochleates	Soy lecithin		354
absinthium			Maltodextrin		
	Essential oil	Spray drying	DE10		355
Nigella sativa			Arabic gum		256
	Hexane extract	Spray drying	and		550
	Thymoquinone	Liposome	DPPC		357
	2 1	Nano gel	Chitosan and		
	Essential oil	(self-	potato dextrose		146
Cuminum cyminum	(carreic acid)	aggregation)	agar and potato		
			Arabic gum,		
	Cumin oleoresin	Spray drying	maltodextrin,		358
		Nona aal	modified starch		
	Essential oil	(self-assembly)	MA-chitosan		359
Artemisia	Nodal segments	MS medium	Sodium		360
absinthium	. tour segments		alginate		

	Glycyrrhiza uralensis polysaccharide	liposome	Soybean phospholipid		361
-	Glycyrrhizic acid	Ionic complexation/ freeze-dried	Chitosan-katira gum		362
	Total flavonoids	liposome	Soybean		363
Dracocephalum	Total phenol	Liposome	Phospholipid		160
moldavica	Tilianin	Liposome	Phosphatidyl choline		364
	Polysaccharides	liposome	Soyabean lecithin		365
-	Chlorogenic acid				
Arctium lappa	and caffeic acid	liposome	Lecithin		366
	Total extract (shoot tips)	Solution	Sodium alginate		367
Citrus aurantium	Flavonoids	Spray drying	Cellulose acetate phthalate		368
	Oil extracts	Nanoemulsion	Different emulsifiers		369
Citrus aurantifolia	Total extract	Liposomes	Soybean phospholipids, triglycerides, and fatty acids		370
Myrtus communis	leaves	Liposome	Egg phosphatidylch oline and cholesterol	Phosphate buffer saline solution (PBS) (pH 7.4)	371
	Total extract	Spray drying	Potassium bromide.	Henna extract was spray dried using a co-current spray drier apparatus (capacity of the spray drier: 500 mL/h water evaporation).	372
Lawsonia inermis (henna)	Total extract	Noisome (thin film hydration method)	Cholesterol and Lawsone	Solvent was evaporated at 60 °C under vacuum in a rotary evaporator. The resulted thin lipid was hydrated with 10 mL of deionized water at 60 °C. The resulting solution was further sonicated in an ultrasonic bath for 30 min at 50 °C. Niosome purification was performed by a 0.22 um membrane.	373
Ziziphus	Protein hydrolysate	Solution	Sodium		374
јијиве	extracted		alginate		
Ziziphus spina-christi					
Pimpinella	Essential oil	Freeze drying	Chitosan		3/5
Anisum	oil	Liposome	choline		376
Artemisia dracunculus	Essential oil	Nano-emulsion	Oil and surfactant		377
Silybum	Silymarin	liposomes	Lecithin soya powder and cholesterol		378
marianum	Silymarin	liposome	Lecithin and cholesterol		271
Echium	Total extract	Suspension	Paraffin and		379
amoenum	Total extract	Spray drying	erythrocyte		380
Malva	rotar extract	oping drying			
sylvestris					
Boswellia serrata	Total extract	Phytosome	Lecithin, Phospholipon 90G, cholesterol		381

CONCLUSION

In this review, the most relevant medicinal plants known in the Middle East for their

therapeutic properties are presented. These medicinal plants have been used for centuries in the human diet, some as food, others as spices, aromatic plants, and as medicines. The review summed up their bioactive compounds and biological activities, as well as their traditional uses and known health benefits.

As some of the active components of these plants are very sensitive and are easily degraded during food processing or storage, their encapsulation can be a feasible solution to overcome these limitations. In the last few decades, a significant body of research has vielded various encapsulation systems produced by numerous different methods, such as antisolvent precipitation, complex coacervation, electrospinning or electrospraying, emulsification, extrusion, fluid bed coating, freeze drying, liposome/nanoliposome, layer-by-layer deposition, phytosome/nanophytosome, solid dispersion, spray drying, sol-gel, suspension cross-linking, freeze spray drying, solid lipid nanoparticle (SLN), nanostructured lipid carriers (NLC), inclusion complexation, thermal gelation and ionic gelation etc., which have the potential to be used in several food, pharmaceutical and biological applications.

ACKNOWLEDGMENTS: This work was financially supported by: Base Funding -UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE – funded by national funds through FCT/MCTES (PIDDAC); Project POCI-01-0145-FEDER-028715 (MicroDelivery Development of controlled delivery functional systems by microencapsulation of natural and active compounds with therapeutic, nutritional and technological interest), funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade Internacionalização (POCI) and by national funds (PIDDAC) through FCT/MCTES; Project "LEPABE-2-ECO-INNOVATION" - NORTE-01-0145-FEDER-000005, funded by Norte Portugal Regional Operational Programme (NORTE 2020), under PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). Also, Berta Estevinho acknowledges FCT for the contract based on the "Lei do Emprego Científico" (DL 57/2016).

REFERENCES

¹ J. K. Patra, G. Das, S. Lee, S. S. Kang and H. S. Shin, *Trends Food Sci. Technol.*, **82**, 89 (2018), https://doi.org/10.1016/j.tifs.2018.10.001

² T. Belwal, S. M. Ezzat, L. Rastrelli, I. D. Bhatt, M. Daglia *et al.*, *Trends Anal. Chem.*, **100**, 82 (2018), https://doi.org/10.1016/j.trac.2017.12.018

³ S. I. Cameron, R. F. Smith and K. E. Kierstead, *Pharm. Biol.*, **43**, 425 (2008), https://doi.org/10.1080/13880200590963736

⁴ A. Hosseini and H. Hosseinzadeh, *Biomed. Pharmacother.*, **99**, 411 (2018), https://doi.org/10.1016/j.biopha.2018.01.072

⁵ M. Reza, A. Anaeigoudari and M. Hashemzehi, J. *Tradit. Chinese Med. Sci.*, **9**, 98 (2018), https://doi.org/10.1016/j.jtcme.2018.01.002

⁶ Y.-Y. Chan, C.-H. Li, Y.-C. Shen and T.-S. Wu, *Chem. Pharm. Bull.* (*Tokyo*), **58**, 61 (2010), https://doi.org/10.1248/cpb.58.61

⁷ M. H. Abd El-Razek, S. Ohta, A. A. Ahmed and T. Hirata, *Phytochemistry*, **58**, 1289 (2001), https://doi.org/10.1016/S0031-9422(01)00324-7

⁸ V. Sharma, R. C. Agrawal and S. Pandey, J. *Environ. Res. Dev.*, **7**, 1552 (2013)

⁹ M. C. Braga, E. C. Silvério Vieira and T. Ferreira de Oliveira, *Food Chem.*, **265**, 308 (2018), https://doi.org/10.1016/j.foodchem.2018.05.096

¹⁰ S. M. Jadouali, H. Atifi, R. Mamouni, K. Majourhat, Z. Bouzouba *et al.*, *J. Saudi Soc. Agric. Sci.*, **18**, 476 (2018), https://doi.org/10.1016/j.jssas.2018.03.007

¹¹ Z. Khorasanchi, M. Shafiee, F. Kermanshahi, M. Khazaei, M. Ryzhikov *et al.*, *Phytomedicine*, **43**, 21

(2018), https://doi.org/10.1016/j.phymed.2018.03.041 ¹² L. Barros, A. M. Carvalho and I. C. F. R. Ferreira, *Food Chem. Toxicol.*, **48**, 1466 (2010), https://doi.org/10.1016/j.fct.2010.03.012

¹³ Z. Shah, S. Shafi and J. Magrey, *J. Pharm. Res.*, **12**, 857 (2018)

¹⁴ R. Badoni, D. Kumar, S. Combrinck, C. Cartwright-Jones and A. Viljoen, *J. Ethnopharmacol.*, **155**, 80 (2014)

 ¹⁵ S. Alinian, J. Razmjoo and H. Zeinali, *Ind. Crop. Prod.*, **81**, 49 (2016), https://doi.org/10.1016/j.indcrop.2015.11.040

¹⁶ V. Aleksic and P. Knezevic, *Microbiol. Res.*, **169**, 240 (2014),

https://doi.org/10.1016/j.micres.2013.10.003

¹⁷ A. E. Al-Snafi, *IOSR J. Pharm.*, **6**, 2250 (2016), www.iosrphr.org

¹⁸ M. Reza, A. Anaeigoudari and M. Hashemzehi, *J. Tradit. Chinese Med. Sci.*, **9**, 98 (2018), https://doi.org/10.1016/j.jtcme.2018.01.002

²⁰ B. Saadali, D. Boriky, M. Blaghen, M. Vanhaelen and M. Talbi, *Phytochemistry*, **58**, 1083 (2001)

²¹ B. Benítez, M. March-Salas, A. Villa-Kamel, U. Cháves-Jiménez, J. Hernández *et al., J. Ethnopharmacol.*, **219**, 133 (2018), https://doi.org/http://dx.doi.org/10.1016/j.jep.2018.03. 007

²² A. Borah, M. Paw, R. Gogoi, R. Loying, N. Sarma

et al., *Ind. Crop. Prod.*, **129**, 448 (2019), https://doi.org/10.1016/j.indcrop.2018.12.035

²³ R. Badoni Semwal, D. K. Semwal, S. Combrinck,
C. Cartwright-Jones and A. Viljoen, J. Ethnopharmacol., 155, 80 (2014),
https://doi.org/10.1016/j.jep.2014.05.042

²⁴ F. Zhao, L. Wang and K. Liu, *J. Ethnopharmacol.*, **122**, 457 (2009), https://doi.org/10.1016/j.jep.2009.01.038

 ²⁵ Q. H. Gao, C. Sen Wu and M. Wang, J. Agric.
 Food Chem., 61, 3351 (2013), https://doi.org/10.1021/jf4007032

²⁶ Z. Mazarei and H. Rafati, *LWT*, **100**, 328 (2019), https://doi.org/10.1016/j.lwt.2018.10.094

²⁷ S. M. Hasheminya, R. R. Mokarram, B. Ghanbarzadeh, H. Hamishekar, H. S. Kafil *et al.*, *Polym. Test.*, **73**, 377 (2019), https://doi.org/10.1016/j.polymertesting.2018.12.002

²⁸ S. Siavash Saei-Dehkordi, A. A. Fallah, M. Heidari-Nasirabadi and M. Moradi, *Int. J. Food Sci. Technol.*, **47**, 1579 (2012), https://doi.org/10.1111/j.1365-2621.2012.03006.x

²⁹ F. Jafari, F. Ghavidel and M. M. Zarshenas, *J. Acupunct. Meridian Stud.*, **9**, 118 (2016), https://doi.org/10.1016/j.jams.2016.04.003

³⁰ E. Giannouli, D. Athanasopoulos, G. Panagopoulos, S. Tsiara and C. E. Karageorgiou, *J. Neurol. Sci.*, **333**, e703 (2013), https://doi.org/10.1016/j.jns.2013.07.2427

³¹ E. Kakouri, D. Daferera, S. Paramithiotis, K. Astraka, E. H. Drosinos *et al.*, *J. Dermatol. Sci.*, **4**, 66 (2017), https://doi.org/10.1016/j.jarmap.2016.09.002

³² T. C. Delozier, G. E. Kissling, S. J. Coulter, D. Dai,
 J. F. Foley *et al.*, *Signal Transduct.*, **35**, 682 (2009),
 https://doi.org/10.1124/dmd.106.012823.Detection

³³ S. I. Bukhari, M. Manzoor and M. K. Dhar, *Biomed. Pharmacother.*, **98**, 733 (2018), https://doi.org/10.1016/J.BIOPHA.2017.12.090

³⁴ K. Bajbouj, J. Schulze-Luehrmann, S. Diermeier, A. Amin and R. Schneider-Stock, *BMC Complement. Altern. Med.*, **12** (2012), https://doi.org/10.1186/1472-6882-12-69

³⁵ E. Kakouri, D. Daferera, S. Paramithiotis, K. Astraka, E. H. Drosinos *et al.*, *J. Dermatol. Sci.*, **4**, 66 (2017), https://doi.org/10.1016/j.jarmap.2016.09.002
 ³⁶ M. H. Boelehedu and J. C. L. C

³⁶ M. H. Boskabady and L. Gholami Mahtaj, *BMC Complement. Altern. Med.*, **15**, 1 (2015), https://doi.org/10.1186/s12906-015-0574-y

 ³⁷ F. Akrami, A. Rodríguez-Lafuente, K. Bentayeb,
 D. Pezo, S. R. Ghalebi *et al.*, *LWT - Food Sci. Technol.*, **60**, 929 (2015),
 https://doi.org/10.1016/j.lwt.2014.09.051

³⁸ M. Mahboubi, *J. Integr. Med.*, **16**, 20 (2018), https://doi.org/10.1016/j.joim.2017.12.006

³⁹ M. R. Khazdair, V. Ghorani, A. Alavinezhad and M. H. Boskabady, *Fundam. Clin. Pharmacol.*, **32**, 26 (2018), https://doi.org/10.1111/fcp.12331

⁴⁰ M. Moradi, H. Tajik, S. Mehdi, R. Rohani and A. Mahmoudian, *LWT - Food Sci. Technol.*, **72**, 37

(2016), https://doi.org/10.1016/j.lwt.2016.04.026

⁴¹ A. Mansour, K. Enayat, M. S. Neda and A. Behzad, Asian Pac. J. Trop. Med., **3**, 439 (2010), https://doi.org/10.1016/S1995-7645(10)60105-8

⁴² M. Shokrzadeh, M. Azadbakht, N. Ahangar, H. Naderi and S. Saeedi Saravi, *Pharmacogn. Mag.*, **6**, 102 (2010), https://doi.org/10.4103/0973-1296.62894

⁴³ M. H. Boskabady, M. Kaveh, N. Eftekhar and A. Nemati, *Evidence-based Complement. Altern. Med.*,
 2011 (2011), https://doi.org/10.1155/2011/857124

⁴⁴ F. V. Silva, A. G. Guimarães, E. R. S. Silva, B. P. Sousa-Neto, F. D. F. Machado *et al.*, *J. Med. Food.*, **15**, 984 (2012), https://doi.org/10.1089/jmf.2012.0102

⁴⁵ M. H. Boskabady and L. Gholami Mhtaj, *Biomed. Res. Int.*, **2014** (2014), https://doi.org/10.1155/2014/802189

⁴⁶ M. Jenkins, *Acupunct. Med.*, **11**, 106 (1993), https://doi.org/10.1136/aim.11.2.106-a

⁴⁷ M. A. Maggiore, A. A. Albanese, L. B. Gende, M. J. Eguaras, G. M. Denegri *et al.*, *Parasitol. Res.*, **110**, 1103 (2012), https://doi.org/10.1007/s00436-011-2595-x

 ⁴⁸ M. Moazeni, H. Borji, M. Saboor Darbandi and M.
 J. Saharkhiz, *Res. Vet. Sci.*, **114**, 308 (2017), https://doi.org/10.1016/j.rvsc.2017.06.003

⁴⁹ H. Sajed, A. Sahebkar and M. Iranshahi, J. *Ethnopharmacol.*, **145**, 686 (2013), https://doi.org/10.1016/j.jep.2012.12.018

⁵⁰ M. Ramezani, H. Hosseinzadeh and S. Samizadeh, *J. Ethnopharmacol.*, **91**, 167 (2004), https://doi.org/10.1016/j.jep.2003.12.016

⁵¹ A. Naeini, A. R. Khosravi, M. Chitsaz, H. Shokri and M. Kamlnegad, *J. Mycol. Med.*, **22**, 211 (2012), https://doi.org/10.1016/j.mycmed.2012.04.006

⁵² M. K. Kaleji and M. R. Ardakani, *Iran. J. Plant Physiol.*, 2457 (2018),

https://doi.org/10.22034/ijpp.2018.540990

⁵³ C. Yang, S. Chhabra, J.-Y. Hong and Th. J. Smith,
 J. Nutr., **131**, 951 (2001),
 https://doi.org/10.1093/jn/131.3.1041S

⁵⁴ C. A. Jaleel, P. Manivannan, B. Sankar, A. Kishorekumar, R. Gopi *et al.*, *Colloid. Surfaces B Biointerfaces*, **60**, 7 (2007), https://doi.org/10.1016/j.colsurfb.2007.05.012

⁵⁵ V. Pandey, R. S. Verma, A. Chauhan and R. Tiwari, *J. Herb. Med.*, **4**, 89 (2014), https://doi.org/10.1016/j.hermed.2013.12.001

⁵⁶ I. Bajalan, R. Rouzbahani, A. G. Pirbalouti and F. Maggi, *Ind. Crop. Prod.*, **107**, 305 (2017), https://doi.org/10.1016/j.indcrop.2017.05.063

⁵⁷ H. Matsuura, H. Miyazaki, C. Asakawa, M. Amano, T. Yoshihara *et al.*, *Phytochemistry*, **65**, 91 (2004),

https://doi.org/10.1016/j.phytochem.2003.10.009

⁵⁸ E. T. Rfsse and F. W. Parrish, *Carbohyd. Res.*, 18, 381 (1971)
 ⁵⁹ A. M. Džemće, M. D. Seleviće, M. Navaka, C. M. Seleviće, M. S. Seleviće, M. Seleviće, M. Seleviće, M. Seleviće, M. S. Seleviće, M. Selević

⁵⁹ A. M. Džamíc, M. D. Sokovíc, M. Novakovíc, M. Jadranin, M. S. Ristíc *et al.*, *Ind. Crop. Prod.*, **51**, 401 (2013), https://doi.org/10.1016/j.indcrop.2013.09.038

⁶⁰ G. Hatipo, M. Sökmen, E. Bektas, D. Daferera and A. Sökmen, *Ind. Crop. Prod.*, **43**, 427 (2013), https://doi.org/10.1016/j.indcrop.2012.07.028

⁶¹ W. Kreis, M. H. Kaplan, J. Freeman, D. K. Sun and P. S. Sarin, *Antiviral Res.*, **14**, 323 (1990), https://doi.org/10.1016/0166-3542(90)90051-8

⁶² M. P. Letessier, K. P. Svoboda and D. R. Walters, J. *Phytopathol.*, **149**, 673 (2001), https://doi.org/10.1046/j.1439-0434.2001.00692.x

⁶³ L. Nedorostova, P. Kloucek, L. Kokoska, M. Stolcova and J. Pulkrabek, *Food Control*, 20, 157 (2009), https://doi.org/10.1016/j.foodcont.2008.03.007
 ⁶⁴ Z. Váradyová, J. Pisarčíková, M. Babják, A. Hodges, D. Mravčáková *et al.*, *Exp. Parasitol.*, 195, 71 (2018), https://doi.org/10.1016/j.exppara.2018.10.009

⁶⁵ M. Mahboubi, G. Haghi and N. Kazempour, *J. Biol. Act. Prod. From Nat.*, **1**, 132 (2011), https://doi.org/10.1080/22311866.2011.10719080

⁶⁶ H. Özer, M. Sökmen, A. Adigüzel, H. Kiliç, F. Sahin *et al.*, *Ital. J. Food Sci.*, **18**, 73 (2006)

⁶⁷ C. Araújo and L. Leon, *Mem. Inst. Oswaldo Cruz.*, **96**, 723 (2001), https://doi.org/10.1590/S0074-02762001000500026

⁶⁸ B. Salehi, Z. Stojanovi-Radic, J. Matejic, M. Sharfi-Radi, N. V. Anil Kumar *et al.*, *Eur. J. Med. Chem.*, **163**, 527 (2019)

⁶⁹ A. Sahebkar, *Integr. Cancer Ther.*, **15**, 333 (2016), https://doi.org/10.1177/1534735415624139

⁷⁰ M. C. Braga, E. C. Silvério Vieira and T. Ferreira de Oliveira, *Food Chem.*, **265**, 308 (2018), https://doi.org/10.1016/j.foodchem.2018.05.096

⁷¹ T. Ak and I. Gülçin, *Chem. Biol. Interact.*, **174**, 27 (2008), https://doi.org/10.1016/j.cbi.2008.05.003

⁷² I. Ragunathan and N. Panneerselvam, *J. Zhejiang Univ. Sci. B.*, **8**, 470 (2007), https://doi.org/10.1631/jzus.2007.B0470

 ⁷³ R. Garg, A. Ingle and G. Maru, *Toxicol. Appl. Pharmacol.*, 232, 428 (2008), https://doi.org/10.1016/j.taap.2008.07.007

⁷⁴ W. Zhu and P. C. W. Fung, *Free Radic. Biol. Med.*, **29**, 870 (2000), https://doi.org/10.1016/S0891-5849(00)00396-8

⁷⁵ I. Dib and F. E. El Alaoui-Faris, *Biomed. Pharmacother.*, **109**, 1884 (2019), https://doi.org/10.1016/j.biopha.2018.10.149

 ⁷⁶ F. Yang, G. P. Lim, A. N. Begum, O. J. Ubeda, M.
 R. Simmons *et al.*, *J. Biol. Chem.*, **280**, 5892 (2005), https://doi.org/10.1074/jbc.M404751200

⁷⁷ I. Mohanty, D. S. Arya and S. K. Gupta, *BMC Complement. Altern. Med.*, **6**, 1 (2006), https://doi.org/10.1186/1472-6882-6-3

⁷⁸ S. Rahmani, S. Asgary, G. Askari, M. Keshvari, M. Hatamipour *et al.*, *Phytother. Res.*, **30**, 1540 (2016), https://doi.org/10.1002/ptr.5659

⁷⁹ J. L. Funk, J. B. Frye, J. N. Oyarzo, N. Kuscuoglu,
 J. Wilson *et al.*, *Arthritis Rheum.*, **54**, 3452 (2006),
 https://doi.org/10.1002/art.22180

⁸⁰ S. K. Kulkarni, K. K. Akula and J. Deshpande, *Pharmacology*, **89**, 83 (2012),

https://doi.org/10.1159/000335660

⁸¹ S. Khattak, Saeed-ur-Rehman, H. U. Shah, W. Ahmad and M. Ahmad, *Fitoterapia*, **76**, 254 (2005), https://doi.org/10.1016/j.fitote.2004.12.012

⁸² D. Saitawee, A. Teerakapong, N. P. Morales, P. Jitprasertwong and D. Hormdee, *Photodiagnosis Photodyn. Ther.*, **22**, 101 (2018), https://doi.org/10.1016/j.pdpdt.2018.03.001

 ⁸³ T. Farkhondeh and S. Samarghandian, *Cardiovasc. Hematol. Disord. Drug Targets*, 16, 30 (2016), https://doi.org/10.2174/1871529X16666160802144510
 ⁸⁴ T. Farkhondeh, S. Samarghandian and F. Samini,

Asian Pac. J. Trop. Med., **9**, 947 (2016), https://doi.org/10.1016/j.apjtm.2016.07.027

⁸⁵ G. Kavoosi and V. Rowshan, *Food Chem.*, **138**, 2180 (2013),

https://doi.org/10.1016/j.foodchem.2012.11.131

⁸⁶ F. Syed, R. Taj, N. Shaheen, M. Norin and S. Khan, *African J. Pharm. Pharmacol.*, **8**, 100 (2014), https://doi.org/10.5897/AJPP2013.3971

⁸⁷ Z. Boghrati and M. Iranshahi, J. Herb. Med., 16, 100244 (2019),

https://doi.org/10.1016/j.hermed.2018.10.009

⁸⁸ A. Goudah, K. Abo-El-Sooud and M. A. Yousef, *Vet. World.*, **8**, 584 (2015), https://doi.org/10.14202/vetworld.2015.584-589.

⁸⁹ M. Iranshahy, *J. Ethnopharmacol.*, **134**, 1 (2011), https://doi.org/10.1016/j.jep.2010.11.067

⁹⁰ K. Zomorodian, J. Saharkhiz, K. Pakshir, Z. Immeripour and A. Sadatsharifi, *Biocatal. Agric. Biotechnol.*, **14**, 300 (2018), https://doi.org/10.1016/j.bcab.2018.03.014

⁹¹ N. Boke, F. Musyoka, M. Saidi, N. Dudai and N. Bernstein, *J. Dermatol. Sci.*, **2**, 21 (2015), https://doi.org/10.1016/j.jarmap.2015.01.003

⁹² E. Latifi, A. A. Mohammadpour and B. F. H. Nourani, *Biomed. Pharmacother.*, **110**, 197 (2019), https://doi.org/10.1016/j.biopha.2018.10.152

⁹³ S. Majid, A. Abdian-Asl and M. Taheri, J. Ayurveda Integr. Med., 8, (2017), https://doi.org/10.1016/j.jaim.2017.02.013

⁹⁴ S. Bahramikia and R. Yazdanparast, *Phyther. Res.*, **26**, 1581 (2012), https://doi.org/10.1002/ptr.4617

⁹⁵ P. Soni, A. A. Siddiqui, J. Dwivedi and V. Soni, *Asian Pac. J. Trop. Biomed.*, **2**, 1002 (2012), https://doi.org/10.1016/S2221-1691(13)60014-3

⁹⁶ B. Y. Yang, Y. G. Xia, Y. Liu, L. Li, H. Jiang *et al.*, *Phytochem. Lett.*, **8**, 92 (2014), https://doi.org/10.1016/j.phytol.2014.02.008

⁹⁷ M. T. Gutierrez-Lugo, T. Barrientos-Benítez, B. Luna, R. M. Ramirez-Gama, R. Bye *et al.*, *Phytomedicine*, **2**, 341 (1996), https://doi.org/10.1016/S0944-7113(96)80079-1

⁹⁸ Z. Saddiqe, U. Wahab, A. Maimoona, R. Raheel and M. Iram, *South African J. Bot.*, **117**, 282 (2018), https://doi.org/10.1016/j.sajb.2018.05.031

⁹⁹ D. Diker, D. Markovitz, M. Rothman and U. Sendovski, *Eur. J. Intern. Med.*, **18**, 336 (2007), https://doi.org/10.1016/j.ejim.2006.09.035

¹⁰⁰ S. Bahadur, M. S. Khan, M. Shah, M. Shuaib, M. Ahmad *et al.*, *Acta Ecol. Sin.*, **40**, 1 (2018), https://doi.org/10.1016/j.chnaes.2018.12.006

¹⁰¹ P. Deepa, K. Sowndhararajan, S. Kim and S. J. Park, *J. Ethnopharmacol.*, **215**, 210 (2018), https://doi.org/10.1016/j.jep.2017.12.045

¹⁰² K. C. Chinsembu, *J. Herb. Med.*, **15**, 100230 (2019), https://doi.org/10.1016/j.hermed.2018.09.001

¹⁰³ S. Abbasi, M. Kamalinejad, D. Babaie, S. M. Shams, Z. Sadr *et al.*, *Complement. Ther. Med.*, **35**, 85 (2017), https://doi.org/10.1016/j.ctim.2017.10.003
¹⁰⁴ Z. Nemati, F. R. Blattner, H. Kerndorff, O. Erol

¹⁰⁴ Z. Nemati, F. R. Blattner, H. Kerndorff, O. Erol and D. Harpke, *Mol. Phylogenet. Evol.*, **127**, 891 (2018), https://doi.org/10.1016/j.ympev.2018.06.036

¹⁰⁵ P. A. Davis and C. K. Iwahashi, *Cancer Lett.*, 165, 27 (2001), https://doi.org/10.1016/S0304-3835(01)00425-6

¹⁰⁶ M. S. Motaharifard, Z. Jafari, M. S. Paknejad, L.
 Oveidzadeh and M. Karimi, *J. Integr. Med.*, 14, 429 (2016), https://doi.org/10.1016/S2095-4964(16)60278-9

¹⁰⁷ M. Shukranul, H. Khairana and J. Ibrahim, *Evidence-Based Complement. Altern. Med.*, **2013**, 974256 (2013), https://doi.org/10.1155/2013/974256

¹⁰⁸ M. A. A. Rashid, K. Ibrahim and N. Mohammd Mahdi, *J. Babylon Univ. Appl. Sci.*, **22**, 1620 (2014)

¹⁰⁹ S. M. F. Bessada, J. C. M. Barreira and M. B. P. P. Oliveira, *Ind. Crop. Prod.*, **76**, 604 (2015), https://doi.org/10.1016/j.indcrop.2015.07.073

¹¹⁰ H. T. Nguyen and Z. É. Németh, *J. Appl. Res. Med. Aromat. Plants*, **3**, 143 (2016), https://doi.org/10.1016/j.jarmap.2016.07.005

¹¹¹ S. Dehdari, H. Hajimehdipoor, S. Esmaeili, R. Choopani and S. A. Mortazavi, *J. Integr. Med.*, 16, 90 (2018), https://doi.org/10.1016/j.joim.2018.01.002
¹¹² M. Mojarrab, M. S. Lagzian, S. A. Emami, J. Asili

¹¹² M. Mojarrab, M. S. Lagzian, S. A. Emami, J. Asili and Z. Tayarani-Najaran, *Brazilian J. Pharmacogn.*, 23, 783 (2013), https://doi.org/10.1590/S0102-695X2013000500010

¹¹³ A. Rustaiyan and S. Masoudi, *Phytochem. Lett.*, 4, 440 (2011),

https://doi.org/10.1016/j.phytol.2011.07.003

¹¹⁴ K. Morteza-Semnani and M. Akbarzadeh, J. *Essent. Oil Res.*, **17**, 321 (2005), https://doi.org/10.1080/10412905.2005.9698918

¹¹⁵ A. C. de Souza Chagas, C. S. Georgetti, C. O. de Carvalho, M. C. de Sena Oliveira, R. A. Rodrigues *et al.*, *Rev. Bras. Parasitol. Vet.*, **20**, 31 (2011), https://doi.org/10.1590/S1984-29612011000100007

¹¹⁶ M. Ali, B. H. Abbasi and G. S. Ali, *Plant Cell. Tissue Organ Cult.*, **120**, 1099 (2015), https://doi.org/10.1007/s11240-014-0666-2

¹¹⁷¹M. Bailen, L. F. Julio, C. E. Diaz, J. Sanz, R. A. Martínez-Díaz *et al.*, *Ind. Crop. Prod.*, **49**, 102 (2013), https://doi.org/10.1016/j.indcrop.2013.04.055

¹¹⁸ J. M. Canadanovic-Brunet, S. M. Djilas, G. S. Cetkovic and V. T. Tumbas, *J. Sci. Food Agric.*, **85**, 265 (2005), https://doi.org/10.1002/jsfa.1950

¹¹⁹ R. Onbas, A. Kazan, A. Nalbantsoy and O. Yesil-

Celiktas, *Plant Foods Hum. Nutr.*, **71**, 286 (2016), https://doi.org/10.1007/s11130-016-0558-1

¹²⁰ P. M. Shafi, G. M. K. Nambiar, R. A. Clery, Y. R. Sarma and S. S. Veena, *J. Essent. Oil Res.*, **16**, 377 (2004),

https://doi.org/10.1080/10412905.2004.9698748

¹²¹ R. Tzenkova, Z. Kamenarska, A. Draganov and A. Atanassov, *Biotechnol. Biotechnol. Equip.*, 24, 1833 (2010), https://doi.org/10.2478/V10133-010-0030-6
¹²² M. Haddad, S. Zein, H. Shahrour, K. Hamadeh, N.

¹²² M. Haddad, S. Zein, H. Shahrour, K. Hamadeh, N. Karaki and H. Kanaan, *Asian Pac. J. Trop. Biomed.*, 7, 157 (2017), https://doi.org/10.1016/j.apjtb.2016.11.024
 ¹²³ P. A. Sofi, N. A. Zeerak and P. Singh, *Turk. J. Biol.*, 33, 249 (2009), https://doi.org/10.3906/biy-0803-18

¹²⁴ M. Mendel, M. Chłopecka, N. Dziekan and W. Karlik, *Anim. Feed Sci. Technol.*, **230**, 30 (2017), https://doi.org/10.1016/j.anifeedsci.2017.05.008

¹²⁵ H. Hassanzadazar, B. Taami, M. Aminzare and S. Daneshamooz, *J. Appl. Pharm. Sci.*, **8**, 150 (2018), https://doi.org/10.7324/JAPS.2018.81019

¹²⁶ T. Ali, K. Saeed, M. Abdullah and I. Murtaza, *Osong Public Heal. Res. Perspect.*, **5**, 358 (2014), https://doi.org/10.1016/j.phrp.2014.11.005

¹²⁷ I. Stappen, N. Tabanca, A. Ali, D. E. Wedge, V. Gochev *et al.*, *Open Chem.*, **16**, 52 (2017), https://doi.org/10.1515/chem-2018-0028

¹²⁸ S. Lahlou, A. Tahraoui, Z. Israili and B. Lyoussi, *J. Ethnopharmacol.*, **110**, 458 (2007), https://doi.org/10.1016/j.jep.2006.10.005

¹²⁹ M. Zendehdel, Z. Torabi and S. Hassanpour, *Vet. Med.* (*Praha*), **60**, 63 (2015), https://doi.org/10.17221/7988-VETMED

¹³⁰¹A. Bogucka-Kocka, H. D. Smolarz and J. Kocki, *Fitoterapia*, **79**, 487 (2008),

https://doi.org/10.1016/j.fitote.2008.07.002

¹³¹ F. K. Nasab and A. K. Reza, *J. Ethnopharmacol.*, **154**, 190 (2014)

¹³² M. A. Fard and A. Shojaii, *BioMed. Res. Int.*, 2013, 692751 (2013), https://doi.org/10.1155/2013/692751

¹³³ S. S. Hosseini, F. Nadjafi, M. H. Asareh and H. Rezadoost, *Sci. Hortic. (Amsterdam)*, **233**, 1 (2018), https://doi.org/10.1016/j.scienta.2018.01.038

¹³⁴ S. Gharby, H. Harhar, D. Guillaume, A. Roudani,
S. Boulbaroud *et al.*, *J. Saudi Soc. Agric. Sci.*, 14, 172 (2015), https://doi.org/10.1016/j.jssas.2013.12.001

¹³⁵ C. C. Toma, G. M. Simu, D. Hanganu, N. Olah, F. M. G. Vata *et al.*, *Farmacia*, **58**, 458 (2010)

¹³⁶ H. Shokri, A. Sharifzadeh and I. Ashrafi Tamai, *J. Mycol. Med.*, **22**, 211 (2012), https://doi.org/10.1016/j.mycmed.2012.04.006

¹³⁷ W. Kooti, Z. Hasanzadeh-Noohi, N. Sharafi-Ahvazi, M. Asadi-Samani and D. Ashtary-Larky, *Chin. J. Nat. Med.*, **14**, 732 (2016), https://doi.org/10.1016/S1875-5364(16)30088-7

¹³⁸ S. Darakhshan, A. Bidmeshki Pour, A. Hosseinzadeh Colagar and S. Sisakhtnezhad, *Pharmacol. Res.*, **95–96**, 138 (2015), https://doi.org/10.1016/j.phrs.2015.03.011

¹³⁹ R. A. Khosravi, H. Shokri, Z. Farahnejat, R. Chalangari and M. Katalin, *Chin. J. Nat. Med.*, **11**, 43 (2013), https://doi.org/10.1016/S1875-5364(13)60006-0

0¹⁴⁰ M. L. Mathur, J. Gaur, R. Sharma and K. R. Haldiya, *J. Endocrinol. Metab.*, **1**, 1 (2011), https://doi.org/10.4021/jem12e

¹⁴¹ J. K. Grover, S. Yadav and V. Vats, J. *Ethnopharmacol.*, **81**, 81 (2002), https://doi.org/10.1016/S0378-8741(02)00059-4

¹⁴² J. Heshmati and N. Namaz, *Complement. Ther. Med.*, **23**, 275 (2015), https://doi.org/10.1016/j.ctim.2015.01.013

¹⁴³ A. Rezaei, A. Farzadfard, A. Amirahmadi, M. Alemi and M. Khademi, *J. Ethnopharmacol.*, **175**, 567 (2015), https://doi.org/10.1016/j.jep.2015.08.010

¹⁴⁴ M. Kanter, M. Akpolat and C. Aktas, *J. Mol. Histol.*, **40**, 379 (2009), https://doi.org/10.1007/s10735-009-9251-0

¹⁴⁵ R. Shafiee-Nick, A. Ghorbani, F. Vafaee Bagheri and H. Rakhshandeh, *Adv. Pharmacol. Sci.*, **2012**, 789796 (2012), https://doi.org/10.1155/2012/789796

¹⁴⁶ S. Zhaveh, A. Mohsenifar, M. Beiki, S. T. Khalili and A. Abdollahi *et al.*, *Ind. Crop. Prod.*, **69**, 251 (2015), https://doi.org/10.1016/j.indcrop.2014.01.033

(2015), https://doi.org/10.1016/j.indcrop.2014.01.033 ¹⁴⁷ N. S. Iacobellis, P. Lo Cantore, F. Capasso and F. Senatore, *J. Agric. Food Chem.*, **53**, 57 (2005), https://doi.org/10.1021/jf0487351

¹⁴⁸ M. Bahmani, A. Zargaran and M. Rafieian-Kopaei, *Brazilian J. Pharmacogn.*, **24**, 468 (2014), https://doi.org/10.1016/j.bjp.2014.08.001

¹⁴⁹ A. S. Jesuthasan and D. I. Uluwaduge, *J. Integr. Med.*, **15**, 19 (2017), https://doi.org/10.1016/S2095-4964(17)60317-0

¹⁵⁰ M. H. Minooeianhaghighi, L. Sepehrian and H. Shokri, *J. Med. Mycol.*, **27**, 65 (2017), https://doi.org/10.1016/j.mycmed.2016.09.002

¹⁵¹ A. Shakeri, M. Masullo, G. D'Urso, M. Iranshahi, P. Montoro *et al.*, *Food Chem.*, **248**, 128 (2018), https://doi.org/10.1016/j.foodchem.2017.12.031

¹⁵²¹M. Ravikumar, P. Sarita, R. G. J. Naga and R. S. Bhuloka, J. Environ. Res. Dev., 7, 1209 (2013)

¹⁵³ Z. Abasian, A. Rostamzadeh, M. Mohammadi, M. Hosseini and M. Rafieian-Kopaei, *Middle East Fertil. Soc.* J., 23, 255 (2018), https://doi.org/10.1016/j.mefs.2018.04.005

¹⁵⁴ M. Aalikhani Pour, S. Sardari, A. Eslamifar, M. Rezvani, A. Azhar *et al.*, *J. Herb. Med.*, **6**, 128 (2016), https://doi.org/10.1016/j.hermed.2016.05.002

¹⁵⁵ K. Muthiah and S. Suja, *Transform. Bus. Econ.*, **16**, 85 (2017), https://doi.org/10.1002/ptr

¹⁵⁶ M. Sadat-Hosseini, M. Farajpour, N. Boroomand and F. Solaimani-Sardou, *J. Ethnopharmacol.*, **199**, 194 (2017), https://doi.org/10.1016/j.jep.2017.02.006

 ¹⁵⁷ M. Bahmani, H. Shirzad, M. Majlesi, N. Shahinfard and M. Rafieian-Kopaei, *Asian Pac. J. Trop. Med.*, 7, S43 (2014), https://doi.org/10.1016/S1995-7645(14)60202-9

¹⁵⁸ H. Kamali, E. Khodaverdi, F. Hadizadeh and S. H.

Ghaziaskar, J. Supercrit. Fluids, **107**, 307 (2016), https://doi.org/10.1016/j.supflu.2015.09.028

¹⁵⁹ F. Zamansoltani, M. Nassiri-Asl and R. Karimi, P. Mamaghani-Rad, *Pharmacologyonline*, **438**, 432 (2008),

https://pharmacologyonline.silae.it/files/archives/2008/ vol1/42_Farzaneh.pdf

¹⁶⁰ K. Dastmalchi, H. J. D. Dorman, M. Kosar and R. Hiltunen, *LWT - Food Sci. Technol.*, **40**, 239 (2007), https://doi.org/10.1016/j.lwt.2005.09.019

¹⁶¹ M. Frąc, K. Oszust, A. Kocira and S. Kocira, *Agric. Agric. Sci. Procedia*, **7**, 74 (2015), https://doi.org/10.1016/j.aaspro.2015.12.036

¹⁶² J. Carlotto, L. M. de Souza, C. H. Baggio, M. F. de
P. Werner, D. Maria-Ferreira *et al.*, *Int. J. Biol. Macromol.*, **91**, 954 (2016), https://doi.org/10.1016/j.ijbiomac.2016.06.033

¹⁶³ M. Shareef, M. A. Ashraf and M. Sarfraz, *Saudi Pharm. J.*, **24**, 233 (2016), https://doi.org/10.1016/j.jsps.2016.04.018

¹⁶⁴ M. Gilca, G. S. Tiplica and C. M. Salavastru, *Clin. Dermatol.*, **36**, 338 (2018),

https://doi.org/10.1016/j.clindermatol.2018.03.008 ¹⁶⁵ L. Possebon, I. de Souza Lima Lebron, L. Furlan da Silva, J. Tagliaferri Paletta, B. G. Glad *et al.*, *Biomed. Pharmacother.*, **99**, 591 (2018), https://doi.org/10.1016/j.biopha.2018.01.106

¹⁶⁶ M. Gentil, J. V. Pereira, Y. T. Corrêa Silva Sousa,
R. Pietro, M. D. Sousa Neto *et al.*, *Phyther. Res.*, 20, 184 (2006), https://doi.org/10.1002/ptr.1829

¹⁶⁷ A. F. El-Kott and M. M. Bin-Meferij, *Curr. Ther. Res.* - *Clin. Exp.*, **77**, 73 (2015), https://doi.org/10.1016/j.curtheres.2015.05.001

¹⁶⁸ S. C. Lin, C. H. Lin, C. C. Lin, Y. H. Lin, C. F. Chen *et al.*, *J. Biomed. Sci.*, **9**, 401 (2002), https://doi.org/10.1007/BF02256533

 ¹⁶⁹ W. Liu, J. Wang, Z. Zhang, J. Xu, Z. Xie, Int. J.
 Biol. Macromol., 65, 446 (2014), https://doi.org/10.1016/j.ijbiomac.2014.01.062

^{170¹}D. Yi, C. L. Alvim Kamei, T. Cools, S. Vanderauwera, N. Takahashi *et al.*, *Plant Cell.*, **26**, 296 (2014), https://doi.org/10.1105/tpc.113.118943

¹⁷¹ C. L. Chan, R. Gan, N. P. Shah and H. Corke, *Food Biosci.*, **26**, 185 (2018), https://doi.org/10.1016/j.fbio.2018.10.016

¹⁷² J. A. Khan and S. Hanee, *Int. J. Appl. Biol. Pharm. Technol.*, **2**, 23 (2011)

¹⁷³ X. Zhai, C. Zhu, Y. Zhang, J. Sun, A. Alim *et al.*, *Carbohyd. Polym.*, **202**, 461 (2018), https://doi.org/10.1016/j.carbpol.2018.09.013

¹⁷⁴ E. P. Lansky and R. A. Newman, J. *Ethnopharmacol.*, **109**, 177 (2007), https://doi.org/10.1016/j.jep.2006.09.006

^{175¹}N. R. Rathod, D. Biswas, H. R. Chitme, S. Ratna, I.
S. Muchandi *et al.*, *J. Ethnopharmacol.*, **140**, 234 (2012), https://doi.org/10.1016/j.jep.2012.01.003

¹⁷⁶ I. Celik, A. Temur and I. Isik, *Food Chem. Toxicol.*, **47**, 145 (2009), https://doi.org/10.1016/j.fct.2008.10.020 ¹⁷⁷ F. I. D. Afolayan, O. M. Adegbolagun, B. Irungu, L. Kangethe, J. Orwa et al., J. Ethnopharmacol., 191, 188 (2016), https://doi.org/10.1016/i.jep.2016.06.045

¹⁷⁸ K. Dhaouadi, W. Meliti, S. Dallali, M. Belkhir, S. Ouerghemmi et al., Ind. Crop. Prod., 77, 544 (2015), https://doi.org/10.1016/j.indcrop.2015.09.037

¹⁷⁹ I. Abulyazid, E. M. E. Mahdy and R. M. Ahmed, Arab. J. Chem., 6, 265 (2013),https://doi.org/10.1016/j.arabjc.2010.10.005

¹⁸⁰ M. Kannahi and T. Nadu, Int. J. Curr. Microbiol. Appl. Sci., **2**, 342 (2013)

S. Ahmadian and M. A. A. Fakhree, Med. Hypotheses. 73, 629 (2009).https://doi.org/10.1016/j.mehy.2009.06.001

¹⁸² W. B. Wan Nik, H. M. Hajar, M. J. Suriani, M. G. M. Sabri and M. J. Ghazali, J. Mech. Eng. Sci., 11 (2017)

¹⁸³ F. Mouhajir, J. B. Hudson, M. Rejdali and G. H. N. Biol., 39. Towers. Pharm. 364 (2001).https://doi.org/10.1076/phbi.39.5.364.5892

¹⁸⁴ K. Sagar and G. M. Vidyasagar, J. Appl. Pharm. Sci.. 3. 77 (2013).https://doi.org/10.7324/JAPS.2013.30213

M. Kulshreshtha, M. Goswami, C. V. Rao and S. Yadav, J. Appl. Pharm. Sci., 1, 69 (2011)

¹⁸⁶ J. Sharma, S. Gairola, R. D. Gaur and R. M. Painuli, J. Ethnopharmacol., 143, 262 (2012), https://doi.org/10.1016/j.jep.2012.06.034

K. Chowk and S. Building, Nat. Prod. Radiance, 3, 406 (2004)

¹⁸⁸ K. Biffi, A. G. de Rezende, L. de Almeida, C. K. B. Yajima, F. C. Barbieri et al., Sci. Med. (Porto Alegre), 23, 34 (2013)

¹⁸⁹ A. B. Hsouna, M. Trigui, G. Culioli, Y. Blache and S. Jaoua, Food Chem., 125, 193 (2011), https://doi.org/10.1016/j.foodchem.2010.08.060

¹⁹⁰ European Commission, SCCS/1532/14, 1 (2014), https://doi.org/10.2772/47128

¹⁹¹ X. Ji, Q. Peng, Y. Yuan, J. Shen, X. Xie et al., 227, Food Chem., 349 (2017),https://doi.org/10.1016/j.foodchem.2017.01.074

¹⁹² M. A. Hossain, J. King Saud Univ. - Sci., **31**, 1352 (2018), https://doi.org/10.1016/j.jksus.2018.12.003

¹⁹³ S. Almansa, F. Hernández, P. Legua, M. Nicolás-Almansa and A. Amorós, J. Sci. Food Agric., 96, 4098 (2016), https://doi.org/10.1002/jsfa.7610 ¹⁹⁴ F. A. Al-Bayati, J. Ethnopharmacol., **116**, 403

(2008), https://doi.org/10.1016/j.jep.2007.12.003

¹⁹⁵ S. F. Abouzid and A. A. Mohamed, J. Ethnobiol. Ethnomed., 7, 1 (2011), https://doi.org/10.1186/1746-4269-7-18

¹⁹⁶ S. Logendra, D. M. Ribnicky, H. Yang, A. Poulev, J. Ma et al., Phytochemistry, 67, 1539 (2006), https://doi.org/10.1016/j.phytochem.2006.05.015

¹⁹⁷ M. Mitoshi, I. Kuriyama, H. Nakayama, H. Miyazato, K. Sugimoto et al., J. Agric. Food Chem., 60, 11343 (2012), https://doi.org/10.1021/jf303377f

¹⁹⁸ D. M. Ribnicky, A. Poulev, J. O'Neal, G. Wnorowski, D. E. Malek et al., Food Chem. Toxicol.,

42.

https://doi.org/10.1016/j.fct.2003.11.002

D. M. Ribnicky, P. Kuhn, A. Poulev, S. Logendra, A. Zuberi et al., Int. J. Pharm., 370, 87 (2009), https://doi.org/10.1016/j.ijpharm.2008.11.012

585

200 N. S. Ajikumaran, K. Rajani, S. N. Akhila and B. 50, 231 Sabulal, Phytomedicine, (2017), https://doi.org/10.1016/J.PHYMED.2017.08.011

²⁰¹ M. Fomani, E. Ngeufa Happi, A. Nouga Bisoue, J. C. Ndom, A. F. Kamdem Waffo et al., Bioorg. Med. 306 Chem. Lett., 26, (2016),https://doi.org/10.1016/j.bmcl.2015.12.028

S. Bissim, S. B. Kenmogne, A. T. Tcho, M. Lateef, A. Ahmed et al., Phytochem. Lett., 29, 148 (2019), https://doi.org/10.1016/j.phytol.2018.12.010

²⁰³ J. A. S. Suryawanshi, African J. Plant Sci., 5, 390 (2011)

²⁰⁴ M. Mitoshi, I. Kuriyama, H. Nakayama, H. Miyazato, K. Sugimoto et al., J. Agric. Food Chem., 60, 11343 (2012), https://doi.org/10.1021/jf303377f

²⁰⁵ M. Akhlaghi, G. Shabanian, M. Rafieian-Kopaei, N. Parvin, M. Saadat et al., Brazilian J. Anesthesiol., 61, 702 (2011), https://doi.org/10.1016/S0034-7094(11)70079-4

²⁰⁶ N. Heydari, M. Abootalebi, N. Jamalimoghadam, M. Kasraeian, M. Emamghoreishi et al., Complement. Clin. Pract.. 32. Ther. 1 (2018).https://doi.org/10.1016/j.ctcp.2018.04.006

A. De Moraes Pultrini, L. Almeida Galindo and M. Costa. Life Sci.. 78. 1720 (2006).https://doi.org/10.1016/j.lfs.2005.08.004

²⁰⁸ G. A. Castillo-Herrera, L. J. Farías-Álvarez, J. A. García-Fajardo, J. I. Delgado-Saucedo, A. M. Puebla-Pérez et al., J. Supercrit. Fluids, 101, 81 (2015). https://doi.org/10.1016/j.supflu.2015.02.026

M. Russo, I. Bonaccorsi, V. Inferrera, P. Dugo and L. Mondello, J. Funct. Foods, 12, 150 (2015), https://doi.org/10.1016/j.jff.2014.11.008

²¹⁰ A. G. Saeed Mollayi, R. Zadali and M. Farzaneh, Phytochem. Lett., 13. 290 (2015),https://doi.org/10.1016/j.phytol.2015.07.010

²¹¹Y. Zhao, H. Sun, L. Ma and A. Liu, Int. J. Biol. Macromol., 101. 680 (2017),https://doi.org/10.1016/j.ijbiomac.2017.03.149

²¹² J. R. Patil, G. K. Jayaprakasha, K. N. C. Murthy, M. B. Chetti and B. S. Patil, Microchem. J., 94, 108 (2010), https://doi.org/10.1016/j.microc.2009.09.008

R. Fekrazad, A. Poorsattar Bejeh Mir, V. Ghasemi Barghi and M. Shams-Ghahfarokhi, Photodiagn. Photodyn. Ther., 12. 289 (2015),https://doi.org/10.1016/j.pdpdt.2014.12.009

²¹⁴ F. Yang, G. P. Wang, B. Jiang, Y. H. Liu, Y. Liu et al., Physiol. Mol. Plant Pathol., 83, 17 (2013), https://doi.org/10.1016/j.pmpp.2013.03.001

²¹⁵ M. Sayyah, H. Boostani, S. Pakseresht and A. Malaieri, Prog. Neuro-Psychopharmacol. Biol. Psych., (2009). 33 1513

https://doi.org/10.1016/j.pnpbp.2009.08.021

²¹⁶ M. R. Heidari, E. M. Azad and M. Mehrabani, J.

Ethnopharmacol., **103**, 345 (2006), https://doi.org/10.1016/j.jep.2005.08.027

²¹⁷ B. Asghari, S. Mafakheri, M. M. Zarrabi, S. A. Erdem, I. E. Orhan *et al.*, *South African J. Bot.*, **120**, 191 (2018), https://doi.org/10.1016/j.sajb.2018.05.017
²¹⁸ S. F. Zohra, B. Meriem and S. Samira, *APCBEE*

Proc., **5**, 546 (2013), https://doi.org/10.1016/j.apcbee.2013.05.091

²¹⁹ S. Feizi, E. Taghipour, P. Ghadam and P. Mohammadi, *Microb. Pathog.*, **125**, 33 (2018), https://doi.org/10.1016/j.micpath.2018.08.054

²²⁰ C. Wang, A. Pei, J. Chen, H. Yu, M. L. Sun *et al.*,
 J. Neurochem., **121**, 1007 (2012),
 https://doi.org/10.1111/j.1471-4159.2012.07744.x

²²¹ H. Zuo, Y. Li, Y. Cui and Y. An, *Biomed. Pharmacother.*, **95**, 679 (2017), https://doi.org/10.1016/j.biopha.2017.08.111

²²² A. S. Prudente, G. Sponchiado, D. A. G. B.
 Mendes, B. S. Soley, D. A. Cabrini *et al.*, *Biomed. Pharmacother.*, **93**, 852 (2017),
 https://doi.org/10.1016/j.biopha.2017.06.083

²²³ P. F. Esteves, A. Sato, M. A. Esquibel, F. de Campos-Buzzi, A. V. Meira *et al.*, *Lat. Am. J. Pharm.* **28**, 454 (2009)

²²⁴ A. S. Prudente, A. M. V. Loddi, M. R. Duarte, A. R. S. Santos, M. T. Pochapski *et al.*, *Food Chem. Toxicol.*, **58**, 324 (2013), https://doi.org/10.1016/j.fct.2013.04.042

^{225¹}J. Q. Yu, Y. L. Geng, D. J. Wang, H. W. Zhao, L. Guo *et al.*, *Phytochem. Lett.*, **28**, 59 (2018), https://doi.org/10.1016/j.phytol.2018.09.010

²²⁶ J. Yang, J. Ren and A. Wang, *Phytochem. Lett.*, 23, 73 (2018), https://doi.org/10.1016/j.phytol.2017.10.005
 ²²⁷ R. R. Bannuru, M. C. Osani, F. Al-Eid and C. Wang, *Semin. Arthritis Rheum.*, 48, 416 (2018), https://doi.org/10.1016/j.semarthrit.2018.03.001

M. Taghizadeh, F. Maghaminejad, A. Mohammad,
M. Rahmani and M. Mahboubi, *Arch. Gerontol. Geriatr.*, **75**, 146 (2018)

²²⁹ I. Kostova and T. Iossifova, *Fitoterapia*, **78**, 85 (2007), https://doi.org/10.1016/j.fitote.2006.08.002

²³⁰ M. Maghrani, N. A. Zeggwagh, A. Lemhadri, M. El Amraoui, J. B. Michel *et al.*, *J. Ethnopharmacol.*, **91**, 309 (2004),

https://doi.org/10.1016/j.jep.2004.01.008

²³¹ R. K. Dhiman and Y. K. Chawla, *Dig. Dis. Sci.*, **50**, 1807 (2005), https://doi.org/10.1007/s10620-005-2942-9

²³² M. Pautasso, G. Aas, V. Queloz and O. Holdenrieder, *Biol. Conserv.*, **158**, 37 (2013), https://doi.org/10.1016/j.biocon.2012.08.026

²³³ M. El-Hefny, A. A. Mohamed, M. Z. M. Salem, M. S. M. Abd El-Kareem and H. M. Ali, *Sci. Hortic.* (*Amsterdam*), 233, 225 (2018), https://doi.org/10.1016/j.scienta.2018.01.046

²³⁴ O. Kadioglu, S. Jacob, S. Bohnert, J. Naß, M. E. M. Saeed *et al.*, *Phytomedicine*, **23**, 293 (2016), https://doi.org/10.1016/j.phymed.2016.01.004

²³⁵ A. Bozicevic, M. De Mieri, A. Di Benedetto, F.

Gafner and M. Hamburger, *Phytochemistry*, **138**, 134 (2017),

https://doi.org/10.1016/j.phytochem.2017.02.028

²³⁶ A. M. Pawlowska, F. Camangi, A. Bader and A. Braca, *Food Chem.*, **112**, 858 (2009), https://doi.org/10.1016/j.foodchem.2008.06.053

²³⁷ N. Hayder, I. Skandrani, S. Kilani, I. Bouhlel, A. Abdelwahed *et al.*, *South African J. Bot.*, **74**, 121 (2008), https://doi.org/10.1016/j.sajb.2007.10.001

(2008), https://doi.org/10.1016/j.sajb.2007.10.001 ²³⁸ A. Chidouh, S. Aouadi and A. Heyraud, *Food Hydrocoll.*, **35**, 733 (2014), https://doi.org/10.1016/j.foodhyd.2013.08.001

²³⁹ A. Bouzabata, O. Bazzali, C. Cabral, M. J.
 Gonçalves, M. T. Cruz *et al.*, *J. Ethnopharmacol.*, 149, 613 (2013), https://doi.org/10.1016/j.jep.2013.06.054

²⁴⁰ M. H. Akhter and M. T. Khan, *J. Ethnopharmacol.*, **11**, 275 (1984),

https://doi.org/10.1067/mge.2001.118256

²⁴¹ W. Aidi Wannes, B. Mhamdi and B. Marzouk, *Food Chem.*, **112**, 621 (2009), https://doi.org/10.1016/j.foodchem.2008.06.018

²⁴² W. A. Wannes, B. Mhamdi, J. Sriti, M. B. Jemia,
 O. Ouchikh *et al.*, *Food Chem. Toxicol.*, **48**, 1362
 (2010), https://doi.org/10.1016/j.fct.2010.03.002
 ²⁴³ P. Montoro, C. I. G. Tuberoso, S. Piacente, A.

²⁴³ P. Montoro, C. I. G. Tuberoso, S. Piacente, A. Perrone, V. De Feo *et al.*, *J. Pharm. Biomed. Anal.*, **41**, 1614 (2006),

https://doi.org/10.1016/j.jpba.2006.02.018

²⁴⁴ D. Csupor, A. Csorba and J. Hohmann, *J. Pharm. Biomed. Anal.*, **130**, 301 (2016), https://doi.org/10.1016/j.jpba.2016.05.034

²⁴⁵ A. Borah, R. Paul, S. Choudhury, A. Choudhury, B. Bhuyan *et al.*, *CNS Neurosci. Ther.* **19**, 847 (2013), https://doi.org/10.1111/cns.12175

²⁴⁶ N. Škottová, V. Krečman, D. Walterová, J. Ulrichová and P. Kosina, *Fac. Medica*, **141**, 87 (1998)
 ²⁴⁷ N. Ahmad, B. H. Abbasi and H. Fazal, *Ind. Crop. Prod.*, **49**, 164 (2013).

https://doi.org/10.1016/j.indcrop.2013.05.004

²⁴⁸ N. Nazir, N. Karim, H. Abdel-Halim, I. Khan, S. F. Wadood *et al.*, *J. Ethnopharmacol.*, **210**, 198 (2018), https://doi.org/10.1016/j.jep.2017.08.026

²⁴⁹¹N. B. Qin, C. C. Jia, J. Xu, D. H. Li, F. X. Xu *et al.*, *Fitoterapia*, **119**, 83 (2017), https://doi.org/10.1016/j.fitote.2017.04.008

https://doi.org/10.1016/j.fitote.2017.04.008 ²⁵⁰ S. Y. Zhu, N. Jiang, J. Tu, J. Yang and Y. Zhou, *Biomed. Environ. Sci.*, **30**, 623 (2017), https://doi.org/10.3967/bes2017.083

²⁵¹ M. R.-K. Asadi-Samani, M. N. Kafash-Farkhad, N. Azimi, A. Fasihi and E. Alinia-Ahandani, *Asian Pac. J. Trop. Biomed.*, 5, 87 (2015), https://doi.org/10.1016/S2221-1691(15)30170-2

²⁵² A. Fondell, K. Edwards, L. M. Ickenstein, S. Sjöberg, J. Carlsson *et al.*, *Eur. J. Nucl. Med. Mol. Imaging*, 37, 114 (2010), https://doi.org/10.1007/s00259-009-1225-7

²⁵³ S. S. Santos, A. Lorenzoni, N. S. Pegoraro, L. B. Denardi, S. H. Alves *et al.*, *Colloid. Surfaces B Biointerf.*, **116**, 270 (2014),

https://doi.org/10.1016/j.colsurfb.2014.01.011

²⁵⁴ K. Li, E. Imre, A. S. His and B. Liu, *Chem. Soc. Rev.*, **43**, 6570 (2014),

https://doi.org/10.1039/C4CS00014E

²⁵⁵ M. A. Augustin and Y. Hemar, *Chem. Soc. Rev.*, 38, 902 (2009), https://doi.org/10.1039/b801739p

²⁵⁶ B. N. Estevinho, F. Rocha, L. Santos and A. Alves, *Trends Food Sci. Technol.*, **31**, 138 (2013), https://doi.org/10.1016/j.tifs.2013.04.001

²⁵⁷ A. Gonçalves, B. N. Estevinho and F. Rocha, *Trends Food Sci. Technol.*, **51**, 76 (2016), https://doi.org/10.1016/j.tifs.2016.03.001

²⁵⁸ I. T. Carvalho, B. N. Estevinho and L. Santos, *Int. J. Cosmet. Ind.*, **38**, 109 (2016)

²⁵⁹ B. N. Estevinho and F. Rocha, in "Biopolymers for Food Design", edited by M. Grumezescu and A. M. Holban, Elsevier Inc., 2018, pp. 191-222

²⁶⁰ J. Aguiar, B. N. Estevinho and L. Santos, *Trends Food Sci. Technol.*, **58**, 21 (2016), https://doi.org/10.1016/j.tifs.2016.10.012

²⁶¹ B. N. Estevinho and F. Rocha, in "Advances in Food Biotechnology", edited by R. V. Ravishankar, John Wiley & Sons, Ltd., 2016, pp. 593-606, https://doi.org/10.1002/9781118864463.ch36

²⁶² B. N. Estevinho and F. Rocha, in "Nanotechnology Applications in Food: Flavor, Stability, Nutrition and Safety", edited by A. E. Oprea and A. M. Grumezescu, Elsevier Inc., Oxford, United Kingdom, 2017, pp. 1-16, https://doi.org/10.1016/B978-0-12-811942-6.00001-7

²⁶³ M. Cano-Sarabia and D. Maspoch, in
"Encyclopedia of Nanotechnology", edited by B. Bhushan, Springer, 2015, https://doi.org/10.1007/978-94-007-6178-0

²⁶⁴ K. G. H. Desai and H. J. Park, *Drying Technol.*, 23, 1361 (2005), https://doi.org/10.1081/DRT-200063478

²⁶⁵ A. Jaworek, *J. Microencapsul.*, **25**, 443 (2008), https://doi.org/10.1080/02652040802049109

²⁶⁶ P. Chivero, S. Gohtani, H. Yoshii and A. Nakamura, *LWT - Food Sci. Technol.*, **69**, 59 (2016), https://doi.org/10.1016/j.lwt.2015.12.064

²⁶⁷ A. Kyriakoudi and M. Z. Tsimidou, *Food Chem.*, **266**, 458 (2018), https://doi.org/10.1016/j.food.chem.2018.06.028

https://doi.org/10.1016/j.foodchem.2018.06.038

²⁶⁸^AH. Rajabi, M. Ghorbani, S. Mahdi, A. Sadeghi and G. Rajabzadeh, *Food Hydrocoll.*, **51**, 327 (2015), https://doi.org/10.1016/j.foodhyd.2015.05.033

^{269¹}S. A. Khatibi, A. Misaghi, M. H. Moosavy, A. A. Basti, M. K. Koohi *et al.*, *J. Food Process. Preserv.*, **41**, 1 (2017), https://doi.org/10.1111/jfpp.12955
²⁷⁰ P. D. F. dos Santos, C. R. L. Francisco, A.

²⁷⁰ P. D. F. dos Santos, C. R. L. Francisco, A. Coqueiro, F. V. Leimann, J. Pinela *et al.*, *Food Funct.*, (2019), https://doi.org/10.1039/C8FO02431F

(2019), https://doi.org/10.1039/C8FO02431F ²⁷¹ M. S. El-Samaligy, N. N. Afifi and E. A. Mahmoud, *Int. J. Pharm.*, **308**, 140 (2006), https://doi.org/10.1016/j.ijpharm.2005.11.006

²⁷² A. Visentin, S. Rodríguez-Rojo, A. Navarrete, D. Maestri and M. J. Cocero, *J. Food Eng.*, **109**, 9 (2012), https://doi.org/10.1016/j.jfoodeng.2011.10.015

²⁷³ L. De Souza, D. A. Madalena, A. C. Pinheiro, J. A. Teixeira, A. A. Vicente *et al.*, *Adv. Colloid Interface Sci.*, 243, 23 (2017), https://doi.org/10.1016/j.cis.2017.02.010

²⁷⁴ M. Fathi, A. Martin and D. J. McClements, *Trends Food Sci. Technol.*, **39**, 18 (2014), https://doi.org/10.1016/j.tifs.2014.06.007

²⁷⁵ C. E. Gumus, E. A. Decker and D. J. Mcclements, *J. Food Eng.*, **207**, 90 (2017), https://doi.org/10.1016/j.jfoodeng.2017.03.019

²⁷⁶ S. M. Jafari, Y. He, B. Bhandari, S. M. Jafari, Y. He *et al.*, *Dry. Technol.*, **25**, 1069 (2010), https://doi.org/10.1080/07373930701396758

²⁷⁷ I. J. Joye and D. J. McClements, *Curr. Opin. Colloid Interface Sci.*, **19**, 417 (2014), https://doi.org/10.1016/j.cocis.2014.07.002

²⁷⁸^{A.} M. Abdul-Fattah, D. S. Kalonia and M. J. Pikal, *J. Pharm. Sci.*, **96**, 1886 (2007), https://doi.org/10.1002/jps.20842

^{279¹} J. Zhang, Q. Tang, X. Xu and N. Li, *Int. J. Pharm.*, **448**, 168 (2013),

https://doi.org/10.1016/j.jpharm.2013.03.021

²⁸⁰ T. Vasconcelos, B. Sarmento and P. Costa, *Drug Discov. Today*, **12**, 1068 (2007), https://doi.org/10.1016/j.drudis.2007.09.005

²⁸¹ C. R. L. Francisco, S. A. Heleno, I. P. M. Fernandes, J. C. M. Barreira, R. C. Calhelha *et al.*, *Food Chem.*, **245**, 845 (2018), https://doi.org/10.1016/j.foodchem.2017.11.098

²⁸² R. Shishir, in Procs. Int. Conf. Electromagn. Interf.

Compat., 2016, pp. 1-4, https://doi.org/10.1109/INCEMIC.2016.7921513

²⁸³S. Y. Hundre, P. Karthik and C. Anandharamakrishnan, *Food Chem.*, **174**, 16 (2015), https://doi.org/10.1016/j.foodchem.2014.11.016

²⁸⁴ J. Weiss, E. A. Decker, D. J. Mcclements, K. Kristbergsson, T. Helgason *et al.*, *Food Biophys.*, 3, 146 (2008), https://doi.org/10.1007/s11483-008-9065-8

²⁸⁵ F. Tamjidi, M. Shahedi, J. Varshosaz and A. Nasirpour, *Innov. Food Sci. Emerg. Technol.*, **19**, 29 (2013), https://doi.org/10.1016/j.ifset.2013.03.002

²⁸⁶ R. Singh, N. Bharti, J. Madan and S. N. Hiremath, J. Pharm. Sci. Technol. 2, 171 (2010)

²⁸⁷ A. I. Bourbon, M. A. Cerqueira and A. A. Vicente,
 J. Food Eng., **180**, 110 (2016),
 https://doi.org/10.1016/j.jfoodeng.2016.02.016

²⁸⁸ K. Alvani, X. Qi and R. F. Tester, *Starch - Stärke*, **63**, 424 (2011), https://doi.org/10.1002/star.201000110

²⁸⁹ E. Assadpour, S. Jafari and Y. Maghsoudlou, *Int. J. Biol. Macromol.*, **95**, 238 (2017), https://doi.org/10.1016/j.ijbiomac.2016.11.023

^{290¹}V. M. Busch, A. Pereyra-Gonzalez, N. Šegatin, P. R. Santagapita, N. P. Ulrih *et al.*, *LWT - Food Sci. Technol.*, **75**, 227 (2017), https://doi.org/10.1016/j.lwt.2016.08.055

²⁹¹ M. Rezaul, I. Shishir, L. Xie, C. Sun and X. Zheng, *Trends Food Sci. Technol.*, **78**, 34 (2018), https://doi.org/10.1016/j.tifs.2018.05.018 ²⁹² D. Duchêne and A. Bochot, *Int. J. Pharm.*, **514**, 58 (2016), https://doi.org/10.1016/j.ijpharm.2016.07.030
 ²⁹³ P. Shao, J. Zhang, Z. Fang and P. Sun, *Food*

²⁹³ P. Shao, J. Zhang, Z. Fang and P. Sun, *Food Hydrocoll.*, **41**, 132 (2014), https://doi.org/10.1016/j.foodhyd.2014.04.003

²⁹⁴ A. P. Rokhade, S. A. Agnihotri, S. A. Patil, N. N. Mallikarjuna, P. V. Kulkarni *et al.*, *Carbohyd. Polym.*, **65**, 243 (2006), https://doi.org/10.1016/j.carbpol.2006.01.013

²⁹⁵ K. Nienaltowska, G. Perfetti, G. M. H. Meesters, F. Ronsse, J. G. Pieters *et al.*, *Powder Technol.*, **198**, 298 (2010), https://doi.org/10.1016/j.powtec.2009.11.026

²⁹⁶ V. R. Babu, K. S. V. K. Rao and Y. I. Lee, *Polym. Bull.*, **65**, 157 (2010), https://doi.org/10.1007/s00289-009-0238-5

²⁹⁷ S. Prasertmanakit, N. Praphairaksit, W. Chiangthong and N. Muangsin, *AAPS PharmSciTech.*, **10**, 1104 (2009), https://doi.org/10.1208/s12249-009-9305-3

²⁹⁸ F. Naqash, F. A. Masoodi, S. A. Rather, S. M. Wani and A. Gani, *Carbohyd. Polym.*, **168**, 227 (2017), https://doi.org/10.1016/j.carbpol.2017.03.058

²⁹⁹ J. Chen, W. Liu, C. Liu, T. Li, R. Liang *et al.*, *Crit. Rev. Food Sci. Nutr.*, **55**, 1684 (2015),
 https://doi.org/10.1080/10408398.2012.718722

³⁰⁰ H. Madziva, K. Ã. Kailasapathy and M. Phillips,
 LWT - Food Sci. Technol., **39**, 146 (2006),
 https://doi.org/10.1016/j.lwt.2004.12.015

³⁰¹ C. Chang, T. Wang, Q. Hu, M. Zhou, J. Xue *et al.*, *Food Hydrocoll.*, **70**, 143 (2017), https://doi.org/10.1016/j.foodhyd.2017.03.033

³⁰² A. Bernkop-Schnürch and S. Dünnhaupt, *Eur. J. Pharm. Biopharm.*, **81**, 463 (2012), https://doi.org/10.1016/j.ejpb.2012.04.007

³⁰³ J. Liang, H. Yan, P. Puligundla, X. Gao and Y. Zhou, *Food Hydrocoll.*, **69**, 286 (2017), https://doi.org/10.1016/j.foodhyd.2017.01.041

³⁰⁴ M. Santa-Maria, H. Scher and T. Jeoh, *J. Microencapsul.*, **29**, 286 (2012), https://doi.org/10.3109/02652048.2011.651494

³⁰⁵ S. Najafi-Soulari, H. Shekarchizadeh and M. Kadivar, J. Biomater. Sci. Polym. Ed., **5063** (2016), https://doi.org/10.1080/09205063.2016.1226042

³⁰⁶ D. Alvarenga, S. Vilela, R. Victória, D. B.
 Fernandes, R. Antoniassi *et al.*, *Food Chem.*, **221**, 1522 (2017),

https://doi.org/10.1016/j.foodchem.2016.10.141 ³⁰⁷ V. D. Prajapati, G. K. Jani, N. G. Moradiya and N.

 P. Randeria, *Carbohyd. Polym.*, **92**, 1685 (2013), https://doi.org/10.1016/j.carbpol.2012.11.021

³⁰⁸ D. Dag, M. Kilercioglu and M. H. Oztop, *LWT* -*Food Sci. Technol.*, **83**, 86 (2017), https://doi.org/10.1016/j.lwt.2017.05.007

³⁰⁹ V. Kaushik and H. Ã. Roos, *LWT - Food Sci. Technol.*, **40**, 1381 (2007), https://doi.org/10.1016/j.lwt.2006.10.008

³¹⁰ N. Devi, M. Sarmah, B. Khatun and T. K. Maji, *Adv. Colloid Interface Sci.*, **239**, 136 (2017), https://doi.org/10.1016/j.cis.2016.05.009 ³¹¹ A. Oancea, I. Aprodu, I. O. Ghinea, V. Barbu, G. Bahrim *et al.*, *J. Food Eng.*, **210**, 83 (2017), https://doi.org/10.1016/j.jfoodeng.2017.04.033

³¹² A. F. Esfanjani, S. M. Jafari and E. Assadpour, *Food Chem.*, **221**, 1962 (2017), https://doi.org/10.1016/j.foodchem.2016.11.149

³¹³ Y. Levinson, S. Ish-Shalom, E. Segal and Y. D. Livney, *Food Funct.*, **7**, 1477 (2016), https://doi.org/10.1039/c5fo01111f

³¹⁴ K. K. H. Y. Ho, K. Schroën, M. F. S. Martín-González and C. C. Berton-Carabin, *Food Struct.*, **12**, 34 (2017), https://doi.org/10.1016/j.foostr.2016.12.001
 ³¹⁵ L. Deng, X. Kang, Y. Liu, F. Feng and H. Zhang, *Food Chem.*, **231**, 70 (2017), https://doi.org/10.1016/j.foodchem.2017.03.027

³¹⁶ G. Ninan, J. Jose and Z. Abubacker, *J. Food Process. Preserv.*, **35**, 143 (2011), https://doi.org/10.1111/j.1745-4549.2009.00467.x

³¹⁷ N. M. Hani, A. E. Torkamani, M. H. Azarian, K. Wa and S. Hawa, *J. Sci. Food Agric.*, **97**, 3348 (2016), https://doi.org/10.1002/jsfa.8185

³¹⁸ M. P. Rascón, C. I. Beristain, H. S. García and M. A. Salgado, *LWT - Food Sci. Technol.*, 44, 549 (2011)
 ³¹⁹ Z. Yao, M. Chang, Z. Ahmad and J. Li, *J. Food Eng.*, 191. 115 (2016).

Eng., 191, 115 (2010), https://doi.org/10.1016/j.jfoodeng.2016.07.012

³²⁰ L. Dai, C. Sun, R. Li, L. Mao, F. Liu *et al., Food Chem.*, **237**, 1163 (2017), https://doi.org/10.1016/j.foodchem.2017.05.134

³²¹ F. Donsì, P. Voudouris, S. J. Veen and K. P. Velikov, *Food Hydrocoll.*, **63**, 508 (2017), https://doi.org/10.1016/j.foodhyd.2016.09.039

³²² L. Liao, Y. Luo, M. Zhao and Q. Wang, *Colloid. Surfaces B Biointerfaces*, **92**, 305 (2012), https://doi.org/10.1016/j.colsurfb.2011.12.003

³²³ S. Sun, Y. Song and Q. Zheng, *Food Hydrocoll.*, **23**, 1054 (2009),

https://doi.org/10.1016/j.foodhyd.2008.04.002

³²⁴ R. Wang, Z. Tian and L. Chen, *Int. J. Pharm.*, **406**, 153 (2011),

https://doi.org/10.1016/j.ijpharm.2010.12.039 ³²⁵ C. Finnie and B. Svensson, *J. Proteomics.*, **72**, 315 (2008), https://doi.org/10.1016/j.jprot.2008.12.001

³²⁶ S. David and Y. D. Livney, *Food Hydrocoll.*, **57**, 229 (2016),

https://doi.org/10.1016/j.foodhyd.2016.01.027

³²⁷ A. Blanco-Padilla, A. López-Rubio, G. Loarca-Piña, L. G.Gómez-Mascaraque and S. Mendoza, *LWT* -*Food Sci. Technol.*, **63**, 1137 (2015), https://doi.org/10.1016/j.lwt.2015.03.081

³²⁸ M. Aceituno-Medina, A. Lopez-Rubio, S. Mendoza and J. María, *Food Hydrocoll.*, **31**, 289 (2013), https://doi.org/10.1016/j.foodhyd.2012.11.009

³²⁹ A. Reinkensmeier, S. Bußler, O. Schlüter, S. Rohn and H. M. Rawel, *FRIN*, **76**, 160 (2015), https://doi.org/10.1016/j.foodres.2015.05.009

³³⁰ D. F. Cortes-Rojas, C. R. F. Souza, M. Chen and
W. P. Oliveira, *Pharm. Dev. Technol.*, 23, 1047 (2018),

https://doi.org/10.1080/10837450.2017.1314491

³³¹ M. Marsanasco, A. L. Márquez, J. R. Wagner, V. Alonso and N. S. Chiaramoni, *Food Res. Int.*, 44, 3039 (2011), https://doi.org/10.1016/j.foodres.2011.07.025
 ³³² Y. Feng, C. Sun, Y. Yuan, Y. Zhu, J. Wan *et al.*,

³³² Y. Feng, C. Sun, Y. Yuan, Y. Zhu, J. Wan *et al.*, *Int. J. Pharm.*, **501**, 342 (2016), https://doi.org/10.1016/j.ijpharm.2016.01.081

³³³ P. Robert, T. Gorena, N. Romero, E. Sepulveda, J. Chavez *et al.*, *Int. J. Food Sci. Technol.*, **45**, 1386 (2010), https://doi.org/10.1111/j.1365-2621.2010.02270.x

³³⁴ R. Albrecht, G. Kresze and B. Mlakar, *Chem. Ber.*, **97**, 483 (1964),

https://doi.org/10.1016/j.scienta.2006.01.030

³³⁵ A. Amiri and N. Mobarakabati, *Int. J. Nutr. Food Eng.*, **11**, 331 (2017)

³³⁶ F. Beyranvand, A. Gharzi, A. Abbaszadeh and R. M. Khorramabadi, *Inflam. Regen.*, **39**, 1 (2019), https://doi.org/10.1186/s41232-019-0090-4

³³⁷ S. M. Jafari, K. Mahdavi-Khazaei and A. Hemmati-Kakhki, *Carbohyd. Polym.*, **140**, 20 (2016), https://doi.org/10.1016/j.carbpol.2015.11.079

³³⁸ C. Dufresne, F. Cormier, S. Dorion, U. A. Niggli, S. Pfister *et al.*, *Enzyme Microb. Technol.*, **24**, 453 (1999), https://doi.org/10.1016/S0141-0229(98)00143-4

 ³³⁹ F. Cormier, C. Dufresne and S. Dorion, *Biotechnol. Tech.*, 9, 553 (1995), https://doi.org/10.1007%2FBF00152442

³⁴⁰ H. S. Colas, W. Shi, V. S. N. Malleswara Rao, A. Omri and M. R. Mozafari, in *Procs. 2013 Int. Conf. Qual. Reliab. Risk, Maintenance, Saf. Eng., QR2MSE 2013*, 4, 1997 (2013), https://doi.org/10.1109/QR2MSE.2013.6625972

³⁴¹ L. Keawchaoon and R. Yoksan, *Colloid. Surfaces*

B Biointerfaces, **84**, 163 (2011), https://doi.org/10.1016/j.colsurfb.2010.12.031

³⁴² A. Mohammadi, M. Hashemi and S. M. Hosseini, *Innov. Food Sci. Emerg. Technol.*, **28**, 73 (2015), https://doi.org/10.1016/j.ifset.2014.12.011

³⁴³ K. Khosravi-Darani, M. E. Khoosfi and H. Hosseini, *J. Food Saf.*, **36**, 515 (2016), https://doi.org/10.1111/jfs.12271

³⁴⁴ C. M. Zamarioli, R. M. Martins, E. C. Carvalho and L. A. P. Freitas, *Brazilian J. Pharmacogn.*, **25**, 53 (2015), https://doi.org/10.1016/j.bjp.2014.11.010

³⁴⁵ M. Gayatri, V. Roopadarshini, R. Kavyashree and C. S. Kumar, *Plant Cell Biotechnol. Mol. Biol.*, **6**, 89 (2005)

 ³⁴⁶ Y.-D. Yan, J. A. Kim, M. K. Kwak, B. K. Yoo, C.
 S. Yong *et al.*, *Biol. Pharm. Bull.*, **34**, 1179 (2011), https://doi.org/10.1248/bpb.34.1179

^{347'}Y. Wang, Z. Lu, F. Lv and X. Bie, *Eur. Food Res. Technol.*, **229**, 391 (2009), https://doi.org/10.1007/s00217-009-1064-6

³⁴⁸ A. Paradkar, A. A. Ambike, B. K. Jadhav and K. R. Mahadik, *Int. J. Pharm.*, **271**, 281 (2004), https://doi.org/10.1016/j.ijpharm.2003.11.014

³⁴⁹ S. Saeidy, A. Nasirpour, G. Djelveh, A. Ursu, C.

Delattre *et al.*, *Colloid. Surfaces A*, **560**, 114 (2019), https://doi.org/10.1016/j.colsurfa.2018.10.018

³⁵⁰ J. Casadebaig, M. Jacob, G. Cassanas, D. Gaudy,
 G. Batlac *et al.*, *J. Ethnobiol. Ethnomed.*, **26**, 211 (1989), https://doi.org/10.1016/0378-8741(89)90069-x
 ³⁵¹ G. Tonon, M. Capuana and C. Rossi, *J. Hortic. Sci. Biotechnol.*, **76**, 753 (2001),

https://doi.org/10.1080/14620316.2001.11511441 ³⁵² S. Sharma, A. Shahzad, S. Mahmood and T. Saeed,

S. Sharma, A. Shanzad, S. Manmood and T. Saeed, *Trees*, **29**, 345 (2015), https://doi.org/10.1007/s00468-014-1114-y

³⁵³ E. Yahyaoui, D. Casamento, D. Frasheri, A. M. D. Onghia and M. A. Germana, *Acta Hortic.*, **1187**, 93 (2017),

https://doi.org/10.17660/ActaHortic.2017.1187.11

³⁵⁴ B. Tamargo, L. Monzote, A. Pinon, L. Machin, M. Garcia *et al.*, *Medicines*, **4**, 38 (2017), https://doi.org/10.3390/medicines4020038

³⁵⁵ N. K. Mohammed, C. P. Tan, Y. A. Manap, A. M. Alhelli, A. Shobirin *et al.*, *Powder Technol.*, **317**, 1 (2017), https://doi.org/10.1016/j.powtec.2017.03.045
³⁵⁶ A. E. Edris, D. Kalemba, J. Adamiec and M. Pi,

³⁵⁶ A. E. Edris, D. Kalemba, J. Adamiec and M. Pi, *Food Chem.*, **204**, 326 (2016), https://doi.org/10.1016/j.foodchem.2016.02.143

³⁵⁷ H. M. Fahmy, E. E. S. Saad, N. M. Sabra, A. A. El-Gohary, F. F. Mohamed *et al.*, *Int. J. Pharm.*, **548**, 597 (2018), https://doi.org/10.1016/j.ijpharm.2018.07.012

³⁵⁸ D. Kanakdande, R. Bhosale and R. S. Singhal, *Carbohyd. Polym.*, **67**, 536 (2007), https://doi.org/10.1016/j.carbpol.2006.06.023

³⁵⁹ M. Ziaee and S. Moharramipour, *J. Pest. Sci.*, **87**, 691 (2014), https://doi.org/10.1007/s10340-014-0590-6

6 ³⁶⁰ R. Akhtar and A. Shahzad, *Asian Pac. J. Trop. Biomed.*, 7, 855 (2017),

https://doi.org/10.1016/j.apjtb.2017.09.010

³⁶¹ Y. Wu, L. Yi, E. Li, Y. Li, Y. Lu *et al.*, *Int. J. Biol. Macromol.*, **102**, 68 (2017), https://doi.org/10.1016/j.ijbiomac.2017.04.006

³⁶² M. Bernela, M. Ahuja and R. Thakur, *Eur. J. Pharm. Biopharm.*, **105**, 141 (2016), https://doi.org/10.1016/j.ejpb.2016.06.003

³⁶³ C. Zeng, W. Jiang, X. Wang, M. Tan and J. Xing, J. Pharmacogn. Phytochem., **5**, 30 (2016)

³⁶⁴ C. Zeng, W. Jiang, M. Tan, X. Yang, C. He *et al.*, *Eur. J. Pharm. Sci.*, **85**, 123 (2016),

https://doi.org/10.1016/j.ejps.2016.02.007 365 A. Kardošová and E. Machová, *Fitoterapia*, **77**,

A. Kardosova and E. Machova, *Fublerapia*, 17, 367 (2006),

https://doi.org/10.1016/j.fitote.2006.05.001 ³⁶⁶ B. Wang, G. Yen, L. Chang, W. Yen and P. Duh,

Food Chem., **101**, 729 (2006), https://doi.org/10.1016/j.foodchem.2006.01.051

³⁶⁷ P. N. Karaputugala, E. S. C. Edirisinghe, D. L. C. Fonseka and W. L. G. Samarasinghe, *Int. J. Sci. Technol. Res.*, **7**, 131 (2018)

³⁶⁸ M. Rosaria, L. Crasci, C. Carbone, R. Patrizia, A. Maria *et al.*, *LWT - Food Sci. Technol.*, **62**, 169 (2015), https://doi.org/10.1016/j.lwt.2015.01.017

 ³⁶⁹ R. Nazari-Vanani, N. Azarpira and H. Heli, *J. Drug Deliv. Sci. Technol.*, **47**, 330 (2018), https://doi.org/10.1016/j.jddst.2018.08.003

³⁷⁰ M. Manconi, M. L. Manca, C. Caddeo, G. Sarais, A. Palmieri *et al.*, *Medicines*, **5**, 108 (2018), https://doi.org/10.3390/medicines5040108

³⁷¹O. Gortzi, S. Lalas, I. Chinou and J. Tsaknis, *Eur. Food Res. Technol.*, **226**, 583 (2008), https://doi.org/10.1007/s00217-007-0592-1

³⁷² A. E. Musa and G. A. Gasmelseed, *Chemistry* (*Easton*), 1, 35 (2012)
³⁷³ M. Barani, M. Mirzaei, M. Torkzadeh-Mahani and

^{3/3} M. Barani, M. Mirzaei, M. Torkzadeh-Mahani and M. H. Nematollahi, *DARU J. Pharm. Sci.*, **26**, 11 (2018), https://doi.org/10.1007/s40199-018-0207-3

³⁷⁴ K. D. Kanbargi, S. K. Sonawane and S. S. Arya, *Int. J. Food Prop.*, **20**, 3215 (2017), https://doi.org/10.1080/10942912.2017.1282516

³⁷⁵^{*}E. Halevas, C. M. Nday, E. Chatzigeorgiou, V.

Varsamis, D. Eleftheriadou *et al.*, J. Inorg. Biochem., **176**, 24 (2017), https://doi.org/10.1016/ j.jinorgbio.2017.07.018 ³⁷⁶ A. Shojaji and M. A. Fard. *ISBN Phases* **2012**.

³⁷⁶ A. Shojaii and M. A. Fard, *ISRN Pharm.*, **2012**, 510795 (2012), https://doi.org/10.5402/2012/510795 ³⁷⁷ M. Osanloo, A. Amani, H. Sorachti, M. Para and F.

³⁷⁷ M. Osanloo, A. Amani, H. Sereshti, M. Reza and F. Esmaeili, *Ind. Crop. Prod.*, **109**, 214 (2017), https://doi.org/10.1016/j.indcrop.2017.08.037

³⁷⁸ M. S. El-Samaligy, N. N. Afifi and E. A. Mahmoud, *Int. J. Pharm.*, **319**, 121 (2006), https://doi.org/10.1016/j.ijpharm.2006.04.023

³⁷⁹ G. D. Noudeh, F. Sharififar, E. Behravan and E. Mohajeri, *J. Med. Plant Res.* **5**, 5378 (2011)

³⁸⁰ S. Fahimi, S. Momen, H. Kojoori, N. Dorri, L. Ara *et al.*, *Int. J. Pharm. Sci. Res.*, **9**, 1263 (2018), https://doi.org/10.13040/ijpsr.0975-8232.9(3).1263-67
 ³⁸¹ A. R. Sahu and S. B. Bothara, *Int. J. Res. Med.*, **4**, 94 (2015)