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The impact of a number of variables involved in pulp processing on the opacity fluctuation of newsprint produced by 

Mazandaran Wood and Paper Industries (MWPI) from hardwood chemi-mechanical pulp was studied. Using real data 

from MWPI paper plant, datasets were prepared and the variables that had the greatest influence on paper opacity were 

found using correlation and mutual information. These included stock pressure in the third group cleaners, the amount 

of fibres retained on 48 mesh screen, rush to drug ratio, output of second fan pump, and head box slice opening. Then, 

appropriate neural network predictive models were developed and tested with a suitable dataset to better control the 

opacity of newsprint produced at MWPI. The models were successfully validated using new real data from the mill, 

demonstrating the generalization capacity of the neural network models. 
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INTRODUCTION 

The positive and negative effects of some 

variables on opacity are known. Opacity increases 

with increasing grammage, filler content, dyestuff 

or pigment addition, while wet pressing and 

calendaring decreases the opacity.
1
 However, 

there are many other factors that directly or 

indirectly affect the opacity, which are not easy to 

recognize. In addition, some variables are well 

controlled in any pulp and paper mill and some 

interact with other variables, which makes the 

problem even more complex. Thus, some 

mathematical tools are very useful to recognize 

and furthermore prioritize the most important 

variables affecting the opacity.   

Many paper mills have advanced digital 

control and online measurement systems 

producing huge amounts of data stored in the 

mills’ database systems. These databases are 

valuable sources with a great potential for 

improving process knowledge, provided that they 

are exploited and explored in a systematic way. 

The  concept of  statistical  data-mining  is   an  

 

overall term for using various, mainly 

multivariate, statistical methods and techniques 

for exploratory data analysis, which are developed 

to handle large data sets with many and often 

highly correlated variables.
2
 Some important 

multivariate data-mining methods used in pulp 

and paper research are: principal component 

analysis (PCA), factor analysis (FA), partial least 

squares (PLS) regression, multiple linear 

regression (MLR) and mutual information 

estimations for input selection.
3-6

  

A neural network is a powerful data modelling 

tool and several authors have addressed its 

general applicability to paper industry problems.
7-

17 Such models have some advantages for this 

type of work: there is no need to assume a starting 

model form; the process is able to handle 

interacting, nonlinear models without special 

considerations; models can be constructed to 

predict multiple outputs from a single set of 

inputs; the models can be inverted to enable the 
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prediction of process inputs corresponding to a 

desired set of outputs.18 

Mazandaran pulp and paper industry is the 

largest paper manufacturer in Iran and the largest 

wood-based paper manufacturer in the Middle 

East. It produces 175000 tons of different types of 

paper per year. The newsprint production line 

involving the CMP pulping process suffers from 

some fluctuations in paper quality. In order to 

recognize the most influencing variables on paper 

quality and generate predictive models to enhance 

quality control, on-line and off-line data were 

used in this study.  

CMP tower, stock preparation and some paper 

machine variables were considered, including 72 

process variables and nearly 7000 observations. 

Several data sets for different stages were 

generated considering the residence time needed 

in each stage. This study was made using Matlab 

computational environment. 

 

EXPERIMENTAL 
Data set preparation 

Paper production lines consist of many stages. Each 

stage of production should receive suitable and 

qualified materials as input, perform definite operation 

at regular time, and deliver the output to the next stage. 

The stages follow one another to meet the final paper 

qualities. On the MWPI newsprint production line, it 

takes about 40 hours for wood chips to convert to final 

paper (Figure 1).  

The pulp flow diagram and the descriptive statistics 

of all variables considered in this study are shown in 

Figure 2 and Table 1, respectively. Several data sets 

with the corresponding time to process variables were 

prepared. However, the methodology is intended to be 

applicable to other variables and other types of paper. 

The data sets are as follows:  

1) Pulp and handsheet test variables from CMP 

tower with 300 observations corresponding to 

opacity test records; 

2) Stock preparation variables corresponding to 

opacity test records with 850 observations; 

3) Wet-end variables corresponding to opacity 

test records with 750 observations; 

Pulp and handsheet test, stock preparation, and wet-

end variables corresponding to opacity test records 

with 85 observations. 

 

 
Figure 1: Short diagram of estimated duration of processing wood chips to final paper 

 
 

Figure 2: Flow diagram of CMP pulping process to the wet-end part of the paper machine
28 

Wood 
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Table 1 

Process variables and pulp and paper properties 

 
Variables Min Mean Max Std.dev. Variables Min Mean Max Std. dev. 

pH of pulp in 

CMP tower 
3.7 4.6 6.8 0.29 Out-Fan Pump 2 43 75 97 6.72 

Cons.            ″ 6.2 10.7 15 1.13 pH-Screen 3.8 7.3 10 0.46 

C.S.F.           ″ 310 408 540 23.9 No.1PD-Screen 0 0.09 0.2 0.03 

Total Na+     ″ 0.15 0.36 0.85 0.08 RPM-SaveAll 501 557 599 8.85 

Shive            ″ 0.01 0.08 0.9 0.09 W.W.Ch. Valve 12 16.4 19 0.74 

Yield            ″ 80.6 84.7 88.9 1.1 SaveAll-Sa.L. 33 41 110 4.7 

+28Mesh      ″ 2.1 9.5 22.1 3.35 Stock SaveAll 1602 2094 2772 110 

+48Mesh      ″ 21.5 40 50.6 4.48 Stock W.W.Sa. 2455 24014 29980 2457 

+100Mesh    ″ 5.3 18.8 48.9 3.92 Recovery Co.Sa. 1.8 3.48 5.65 0.32 

-200 (Fine)   ″ 12.5 31.8 47.3 4.26 Pre.Ref.Cons. 2.8 4 4.5 0.15 

Break.L. 

handsheet test 
1.4 2.4 4.5 0.34 Pre.Ref.CSF 270 368 520 25 

Tear              ″ 131 212 320 30.3 After Ref.Cons 2.8 4 4.7 0.16 

Burst             ″ 35 61 200 12.1 After Ref.CSF 230 319 440 23 

Brightness    ″ 42.5 53.1 60.2 1.35 Level Box Cons. 3.2 3.9 4.3 0.11 

Yellowness   ″ 23.5 28.2 37.3 1.23 Level Box CSF 170 227 370 17.6 

Opacity         ″ 82 90.1 94.2 1.16 Head Box pH 7 7.5 8.8 0.12 

Cons.CMP ref. 3.2 4.1 4.9 0.13 Head B. Cons. 0.69 0.99 1.6 0.07 

Cir.val.CMP ref. 15 25 40 2.75 Head B. CSF 50 79 190 11.6 

Temp.CMP ref. 22 38 48 5.14 W.W. Cons. 0.2 0.42 0.65 0.05 

Load refiner 180 390 625 83.8 First Pass Ret. 35 57 72 3.9 

Cons.-BKP ref. 3 3.99 5.1 0.37 Long Fi. Cons. 1.8 3.7 4.5 0.26 

Load 1-BKP ref. 0 220 440 184 Long Fi. CSF 260 498 630 21.4 

Cir.valve BKP ref. 22 28 45 2.66 Head B. Air Pr. 0.58 0.84 0.98 0.05 

Temp.-BKP ref. 24 41 49 2.33 Head B.Level 348 696 837 71 

CMP ratio 75 81 92 1.77 Slice Open H. 9.99 11.43 13.77 1 

BKP ratio 8 19 28 1.88 Speed-Wire 550 724 795 37.5 

Broke ratio 0 61 114 23 Rush/Drug -10.8 7 -2.5 3.87 

Clay ratio 3 21 44 5.7 
Basis wt. of test 

paper 
46.5 49.3 54 0.41 

Dye ratio 0 4.1 8.7 0.83 Moisture        ″ 7.5 8.6 13 0.34 

Retention aid 0 3 7.7 1.27 Calliper         ″ 66 75 101 3.2 

Blend Cons. 1.25 3.55 5.34 0.64 Bulk              ″ 1.33 1.51 2 0.07 

Machine Cons. 3.14 4.05 7.01 0.07 Ash               ″ .9 4.1 9.1 1.1 

Broke cons. 3.02 3.97 4.8 0.27 Break L.MD ″ 4.7 6.8 9 0.75 

Stock valve 20 29 33 1.29 Break L.CD  ″ 1.2 2 4.9 0.13 

Stock to F.P. flow 2892 6600 9803 577 Elongate MD ″ 1 1.4 3.2 0.14 

RPM-Fan Pump1 838 1081 1220 43 Elongate CD  ″ 2 3 4.6 0.31 

Out-Fan Pump1 56 87 98 4 Burst              ″ 65 102 190 14.1 

G2-cleaners 0.33 0.48 0.79 0.03 Tear MD        ″ 168 219 379 20.3 

G3-cleaners 0.2 0.52 0.91 0.16 Tear CD         ″ 197 304 482 24.3 

G4-cleaners -0.9 -0.74 0.97 0.16 Porosity         ″ 7 18 65 6.8 

T-Decollator 30 42 46 1.93 Rough. Top.  ″ 3.9 4.4 7.1 0.1 

L-Decollator 425 750 912 48 Rough. Bot.   ″ 4 4.9 7.4 0.15 

PD-Decollator 0.48 1.06 1.8 0.10 Brightness     ″ 46.3 50.8 60.8 1.1 

Vac.Decollator 44 97 335 21 Yellowness    ″ 2.1 7.9 17.3 0.89 

RPM-Fan Pump 2 397 846 1043 72 Opacity          ″ 85.3 91.3 94 1 

 

Determination of influencing variables 
Correlation analysis and mutual information are 

two criteria to measure dependencies between 

variables. Correlation analysis shows linear relations 

between process variables and the opacity, while 

mutual information shows nonlinear relations.
13

 The 

most influencing variables on paper opacity are 

detected using these criteria from the mentioned data 

sets. The forward selection method, known as “greedy 

selection”, for detecting influencing variables was 

used. Several methods for estimating mutual 

information were considered, such as a numerical 

method proposed by Kraskov
13

 and two Kernel-based 

methods for estimating the probability density function 

(FKDE and AKDE).
20

   

 

Theoretical foundations of mutual information and 

its estimation 
In information theory, mutual information is 

defined to measure the amount of information shared 

between two variables; so it shows the level of 

dependency of one variable to another.18,19 Let X and Y 
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be two random variables, then mutual information 

between them is a quantity that measures the 

knowledge on Y provided by X and vice versa. If X 

and Y are independent, then X contains no information 

about Y and vice versa and mutual information 

between them is zero. 

The definition of mutual information originates 

from the Shannon entropy in the information theory.
20

 

Mutual information between two random variables X 

and Y is defined in equation (1) where p means 

probability density function: 

,
,

( , )
( ; ) ( , ) log

( ) ( )

X Y
X Y

x y X Y

p x y
I X Y p x y dxdy

p x p y
= ∫ ∫              (1) 

For estimating mutual information we only need to 

estimate p
X,Y

(x,y). Most common estimation methods 

are Histogram and Kernel methods.20 However, they 

will face the course of dimensionality when the 

dimension of space increases. To overcome this 

problem and reduce computing complexity, a recent 

estimator based on k-nearest neighbours’ statistics is 

used.13,19 It estimates mutual information between two 

random variables of any dimensional space.  

Consider a set of N input-output pairs, z i=(x i , y i ) ,  

i=1,…,N, which are assumed to be i.i.d. (independent 

identically distributed) realizations of a random 

variable Z=(X,Y) with density p
X , Y

(x,y)  on the 

spaces spanned by X, Y. Input–output pairs are 

compared through the infinity norm (2), while any 

norms can be used for x x′− and y y′−  (these 

spaces could be completely different):
13 

{ }max ,z z x x y y
∞

′ ′ ′− = − −
                       

(2) 

Let us consider z k ( i ) =(x k ( i ) , yk ( i ))  the kth nearest 

neighbour of z i  (with infinity norm) where k is a fixed 

positive integer ( 1k ≥ ). We denote ( )
2i i k i

z zε
∞

= −  

the distance from z i  to its kth neighbour, 

( )2x
i i k i

x xε = −  and 
( )

2
y
i i k i

y yε = −  the distances 

between the same points projected into the X and Y 

subspaces. Considering Equation (2), it is clear 

that { }max ,
yx

i i iε ε ε= . 

Cubic and rectangular estimations are two versions 

of the estimation method. In the first version, we count 

the number 
x
in  of points x j  whose distance from x i  is 

strictly less than 2iε , and similarly for y instead of x. 

Notice that 2iε  is a random (fluctuating) variable, and 

therefore 
x
in  and 

y
in  also fluctuate. The cubic version 

of estimation is then (3): 

(1)

1

1ˆ ( ; ) ( ) ( 1) ( 1) ( )
N

yx
i i

i

I X Y k n n N
N

ψ ψ ψ ψ
=

 = − + + + + ∑
        

(3) 

In the rectangular version, we replace 
x
in  and 

y
in  by 

the number of sample points with 2x
i j ix x ε− ≤  and 

2
y

i j iy y ε− ≤ .
13

 The second estimate for mutual 

information is then (4): 

(2)

1

1 1ˆ ( ; ) ( ) ( ) ( ) ( )
N

yx
i i

i

I X Y k n n N
k N

ψ ψ ψ ψ
=

 = − − + + ∑
       

(4) 

whereψ  is the Digamma function (5): 

( )
( ) ln ( ) ,      (1) 0.5772156

( )

x d
x x

x dx
ψ ψ

′Γ
= = Γ ≈ −

Γ         

(5) 

where: 

0

1
( )

x u
x u e du

∞
− −Γ = ∫

                                          

(6) 

Generally, two estimators provide very similar 

results. In high dimensions where iε  tends typically to 

be much larger than the marginal jx

iε , the second 

method is recommended.13 In this paper, we use the 

second method to estimate mutual information. The 

proposed value of k = 6 is suitable for a good 

estimation.
21

 

 

Algorithms for input variables selection 
In this section, we propose the algorithm to find the 

best subset of input variables from the initial set.
22-24

 

The objective of the algorithm is to maximize the 

relevance between inputs and output. This algorithm 

starts with an empty set of selected input variables. The 

goal is to select inputs that maximize the mutual 

information between selected inputs and output. This 

ideal greedy algorithm can be described by the 

following procedure:  

1) Initialisation: Set L ←  ‘initial set of n inputs’ S ←  

‘empty set’ T ←  ‘output’. 

2) Computation of the mutual information with the 

output: for each input l L∈  compute ( ; )I T l . 

3) Choice of the first input: find the input l that 

maximizes ( ; )I T l ; set { }L L l← − , { }S l← . 

4) Greedy selection: repeat until desired number of 

input variables is selected: 

a) Computation of the joint mutual information 

between variables: for all variables l L∈ ; 

compute ( ; , )I T l S . 

b) Selection of the next input: choose the input 

l L∈  as the one that maximizes ( ; , )I T l S ; set 

{ }L L l← − , { }S S l← U . 

5) Output the set S  containing the selected inputs. 

The stopping criterion in step 4 is to select the 

desired number of inputs, which can be replaced by 

another criterion such as a considerable decrease 

in ( ; , )I T l S .  

 

Statistical and neural network modelling 
Statistical models were developed using multi 

linear regression. The stepwise variable selection 

method was used to develop predictive models. 

Outliers were eliminated according to regression 

standardized residuals out of the range of 3 and -3. 

Also non-colinearity of models was considered having 

VIF coefficient less than 5. 

Independent influencing process variables on paper 

opacity were measured by correlation and mutual 
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information. Then these selected variables were used to 

investigate the possibility of generating neural network 

models with the least possible errors using feed 

forward back propagation method and tangent sigmoid 

activation functions. Models were then successfully 

validated using new real data of the mill.  

 

RESULTS AND DISCUSSION  

Influencing variables 
Although most of the influencing variables 

show more linear relations than nonlinear, some 

of them have high mutual information values that 

were also nonlinearly dependent. Table 2 presents 

the most influencing CMP tower pulp variables 

on newsprint opacity. The average value of +28 

mesh for a period of 1.5 years was about 9.5%, 

while it was 40% for +48 mesh and 31% for -200 

mesh (fines). Accordingly, no effect, negative 

correlation and positive influence on the paper 

opacity were observed for the values of +28, +48, 

and -200, respectively. Small particle size 

fractions (values of +100 mesh plus -200 mesh) 

are filler-like materials with high specific surface 

area, they improved the scattering coefficient and 

minimized the show-through, and thus showed 

direct relation to opacity. In order to achieve the 

desired newsprint opacity, the fibre classifications 

should be controlled through efficient refining. 

The values measured for +48 mesh, burst and 

tear indices are the most effective variables 

related nonlinearly to newsprint opacity, 

according to Kraskov.
13

  

 
Table 2 

Most influencing CMP tower pulp variables on newsprint opacity 

 

Mutual information 

values 

Mutual information values, 

Forward selection method 
Process 

variables 

Correlation 

values 
Kraskov Kraskov FKDE AKDE 

+48Mesh -0.54 0.17 0.17   

Opacity 0.46  0.29   

Burst -0.46 0.1    

Tear -0.45 0.09    

Breaking L. -0.36  0.35   

+28 & +48Mesh -0.36    0.59 

-200Mesh 0.36     

+100Mesh 0.1   0.14 0.29 

 

 

Table 3 

Most influencing stock preparation variables on newsprint opacity 

 

Mutual information 

values 

Mutual information values, 

Forward selection method 
Process 

variables 

Correlation 

values 
Kraskov Kraskov FKDE AKDE 

G3 cleaners 0.59 0.3 0.30   

Output, F.P.2 0.50     

Retention aid 0.43  0.42   

Stock SaveAll 0.42     

RPM, F.P.2 0.40     

Temp. CMP -0.29   0.34 0.65 

Blend cons.  -0.24 0.25    

PD-decollator 0.18  0.49   

Clay -0.07   0.46 0.88 

G4 cleaners -0.06 0.23    

Stock to F.P.flow -0.03   0.23 0.45 

 

 

On the basis of forward selection and Kraskov 

method, +48 mesh is the first and most related 

variable with 0.17 mutual information value, 

while the sum of +48 mesh and opacity increases 

the Kraskov mutual information value to 0.29, 

and it reaches 0.35 if the effect of breaking length 

variable is added to those two variables. 

According to the forward selection and FKDE or 
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AKDE methods, the first nonlinearly related 

variable to newsprint opacity was +100 mesh and 

the second variable selected by the AKDE method 

was +48 mesh. The results of this study indicated 

that Kraskov’s method showed more acceptable 

results than either FKDE or AKDE methods.  

 
 

Table 4 

Most influencing wet-end variables on newsprint opacity 

 

Mutual information 

values 

Mutual information values, 

Forward selection method 
Process 

variables 

Correlation 

values 
Kraskov Kraskov FKDE AKDE 

Rush/drug  0.52 0.28 0.28   

Slice opening  0.49 0.22    

Head B.L. 0.29  0.39   

H. Air pres.  0.28 0.21 0.42 0.11 0.22 

Speed wire 0.25   0.19 0.36 

 

 

Table 5 

Most influencing newsprint paper test variables on newsprint opacity  

 

Mutual information 

values 

Mutual information values, 

Forward selection method 
Process 

variables 

Correlation 

values 
Kraskov Kraskov FKDE AKDE 

Burst -0.69 0.34 0.34   

Break L. MD -0.60 0.25    

Calliper 0.598 0.24    

Bulk 0.595     

Elongation, MD -0.585     

Porosity  -0.57     

Brightness 0.46  0.54   

Tear, CD -0.38     

Elongation, CD -0.38     

Ash 0.10  0.59 0.10 0.19 

 

 

Table 3 shows some highly correlated and 

controllable variables to newsprint opacity. The 

output of the third group cleaners, the output of 

the second fan pump, the amounts of retention 

aids, the stock save-all flow, and the speed of the 

second fan pump were the variables most 

correlated to opacity. Other variables presented in 

Table 3 were nonlinearly related to opacity. As 

wet-end process variables, rush/drug ratio and 

slice opening were strongly correlated to opacity 

(Table 4). 

The relations between opacity and other 

newsprint properties are shown in Table 5. The 

highest correlation to opacity was observed by the 

burst index, while breaking length, calliper, and 

bulk were also highly related to opacity. These 

paper properties can be considered as factors 

affecting the opacity of newsprint produced at 

MWPI mill, thus the opacity can be controlled by 

adjusting the corresponding process variables. 

 

Statistical models 
Different statistical models were generated 

from the above-mentioned data sets to predict 

opacity. Correlation and mutual information show 

positive or negative relations between opacity and 

process variables, but it cannot be defined how 

much change in the process variable values is 

needed in order to achieve the desired 

improvement in newsprint opacity. These 

regression models are predictive tools to measure 

opacity when any changes occur in the 

independent variables. In other words, by putting 

the desired value of opacity in the following 

equations, the suitable value of different process 

variables can be calculated. Models 1, 2 and 3 

include CMP tower, stock preparation, and wet-

end variables, respectively. Models 4 and 5 

include combinations of all process variables and 

model 6 contains all process variables plus two 

physical properties of final paper, namely calliper 
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and ash. To predict the opacity from some special 

variables, one can select any of the suggested and 

tested models.    

 

Model (1):   

Calculated R-squared = 58% Tested R-squared 

= 51% 

Opacity = 74.936 - 0.060 (+48 Mesh) + 0.266 

(Opacity) - 0.021 (Burst) - 3.554 (Total Na
+
) 

- 0.007 (Tower CSF) 

 

Model (2):  

Calculated R-squared = 55% Tested R-squared 

= 53%  

Opacity = 78.892 + 2.706 (G3 cleaners) + 0.227 

(Dye ratio) + 0.380 (pH Screen) 

+ 0.197 (Retention aid) - 2.603 (PD decollator) + 

0.037 (Out F.P.2) + 0.006 (Broke ratio) 

- 0.044 (Cir. Valve BKP ref.) + 0.014 (RPM 

Saveall) 

 

Model (3):    

Calculated R-squared = 55% Tested R-squared 

= 45%   

Opacity = 84.837+ 0.099 (Rush/drug) + 0.321 

(Slice opening) + 0.004 (Speed wire) 

 

Model (4): 

Calculated R-squared = 71%  Tested R-squared 

= 67% 

Opacity = 80.658 + 2.125 (G3 cleaners) + 0.239 

(Opacity) - 0.735 (Break L.) - 1.920 (Total Na+) 

- 0.486 (Blend cons.) - 0.067 (+48 Mesh) - 0.067 

(Out F.P.1)+ 0.170 (Dye ratio) 

 

Model (5): 

Calculated R-squared = 70% Tested R-squared 

= 68% 

Opacity = 95.615 - 0.041 (+48 Mesh) + 0.117 

(Opacity) – 0.008 (Tear) + 0.074 (Rush/drug) 

+ 0.133 (Retention aid) - 1.981 (Total Na
+
) - 

0.153 (Brightness) - 0.102 (Yellowness) 

 

Model (6):  

Calculated R-squared = 80% Tested R-squared 

= 78% 

Opacity = 71.712 + 0.173 (Calliper) + 0.142 

(Opacity) + 0.169 (Ash) + 0.128 (Retention aid) 

- 0.108 (Brightness) + 0.038 (Rush/drug) - 1.58 

(Total Na+) - 0.004 (Tear) 

 

Neural network models 
By using the variables listed in Tables 2, 3, 4 

and 5 as inputs, the best neural networks with the 

least error and highest R-squared were developed 

to predict opacity according to the models 7, 8, 9, 

and 10 (Table 6). These models predict opacity 

from the most influencing process variables that 

were highly correlated or nonlinearly related to 

the opacity of newsprint produced at MWPI mill. 

The first model was developed from selected 

variables of the CMP tower pulp test (Table 2), 

with two hidden layers having 6 and 20 neurons, 

respectively (Figure 3). 

 

 
 

Figure 3: Neural network model for CMP tower pulp 

 
Table 6  

Specifications of neural network models 

 

Number of neurons R-squared value Neural 

network 

models 

Number 

of inputs 
First hidden 

layer 

Second 

hidden layer 

Training 

set 

Test  

set 

Validation 

set 

Model 7 8 6 20 63 44 55 

Model 8 11 7 18 79 62 60 

Model 9 5 5 15 70 58 57 

Model 10 10 5 20 80 73 75 

 

CONCLUSION  
In this study, the process variables influencing 

newsprint opacity were defined for paper 

produced at Mazandaran Wood and Paper 

Industries (MWPI). Some of these variables are 

easier to control such as most of the stock 

preparation and wet-end variables, including stock 

pressure in the third group cleaners, rush to drug 
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ratio, output of second fan pump, and head box 

slice opening. On the other hand, CMP tower 

influencing variables, such as +48 mesh screen 

fraction, can be controlled through the uniformity 

of the chip quality and optimization of chemical 

treatment and refining in the pulp mill. 

It may be found that how much change is 

needed for these influencing variables to achieve 

the desired level of opacity by using a suitable 

neural network model developed in this study. 

Neural network models are better tools than 

statistical ones since they show higher R-squared 

values and contain variables both linearly and 

nonlinearly related to newsprint opacity. 

However, statistical models are also very useful 

tools, because they can easily predict any of the 

process variables by putting the desirable amount 

of opacity in regression equations. It is expected 

that these models would increase the production 

yield and reduce the consumption of materials and 

energy at MWPI.  
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